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Introduction. Problems in dual orthogonal series can usually be put in 
the following form: Given {0„}, a complete orthonormal sequence in L2 [0, 1], 
two sequences {an} and {bn} of nonnegative constants, a point c in (0, 1) 
and an ƒ in L2 [0, 1], find a sequence {ƒ„} G I2 such that 

oo 

(1) Z JnK = / ( in theL 2 [0 , 1] norm) 

where the base functions i//w are defined by 

!

an<j>n in (0, c), 

bn<t>n in (c, 1). 

Some related problems concern the uniqueness and approximation of {jn} 

(when solutions to equation (1) exist) and the completeness of {i//„} (even 
when solutions to equation (1) do not necessarily exist). 

In our abstract approach we proceed as follows: Let R be a real, separ­
able Hubert space and let P and Q, subspaces of R, be orthogonal comple­
ments, p and q are the projection operators onto P and Q respectively. Let 
{^„} be a complete, orthonormal sequence in R, and let {an} and {bn} be 
sequences of nonnegative constants. The general problem is: Given ƒ E R find 
a sequence {ƒ„} G I2 such that 

oo 

(2) H Jn^n=f (in the norm of/?) 
n-l 

where the base functions \pn are now defined by 

K = ««**».) + *««(**)• 
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In this note, we announce some results about the existence, uniqueness and 

approximation of {ƒ„} (when solutions to equation (2) exist) and about the 

completeness of {\jjn} (even when solutions to (2) do not necessarily exist). 

The proofs, being lengthy and involved, will be published elsewhere (see [1] 

and [2]). 

Existence and uniqueness. 

THEOREM 1. If {an} and {bn} are sequences of positive constants, one 
of which is bounded above zero, and if, as n approaches infinity, bn/an con­
verges to a positive limit, then, for any fin R, equation (2) has a unique solu­
tion {ƒ„} e /2. In fact, {jnan} and {fnbn} are in I2. 

This result is applicable to all dual Sturm-Liouville series associated with 
mixed boundary conditions of the second and third kind (see the appendix 
of [2] for a definition of the various boundary conditions and [3] for a gen­
eral background of the relation of the boundary conditions to dual orthogonal 
series). 

To illustrate the application of this theorem we introduce the following 
potential problem: Let hx and h2 be nonnegative constants. For a given 
f(x) in L2 [0,7r], we seek the potential u(x, y) in {0 < x < n; y > 0} with 

(3a) u(x, y) bounded at infinity, 
(3b)W:c(0,^) = 0 f o r ^ > 0 , 
(3c) u(ir, y) = 0 for y > 0, 
(3d) uy(x, 0) = hxu(x, 0) - f(x) for 0 < x < c, 
(3e) uy(x, 0) = h2u(x, 0) - ƒ(*) for c < x < it. 

Conditions (3a), (3b) and (3c), when used with the method of separation of 
variables, imply u can be expressed by 2jn(cos(n - }4)x)(exp(-fl + #).y). 
For conditions (3d) and (3e) to be satisfied we must have 

(4a) Xfn(n - fc + ht)y/^j2 cos(n -tf)x = y/nJTf(x) for0<x<c, 
(4b) S fn(n -VL + h2)y/^j2cos(n - fc)x = y/nj2f(x) for c < x < n. 

If we set an = n - & + ht, bn = n - Vi + h2 and <t>n = \fnjl cos(n - Vi)x, 
then the hypothesis of Theorem 1 is satisfied, so that there exists a unique 
sequence {jn} G I2 satisfying the dual trigonometric equation (4a) and (4b). 

In many cases, we have ax oibx equal to zero, corresponding to an 
eigenvalue associated with <j>x being zero. This occurs when the boundary 
conditions associated with {0W} (e.g., (3b) and (3c) in the above example) 
are Neumann, periodic or singular. These cases are covered by Theorem 2 in 
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which pkj and qkj. denote respectively the inner products (p<l>ki 0.) and 

(<70fc, 0/). 

THEOREM 2. Let {an} be a positive sequence, bounded above zero. Let 
{bn} be a nonnegative sequence such that, for some N, bn > 0 for n> N and 
such that ajbn converges to a positive limit as n approaches infinity. Let the 
subspace spanned by the N-dimensional vectors (pkl, pk2, pk3, . . . , pkN), 
k = 1, 2, 3, . . . , have dimension N. Then equation (2) has a unique solution 
{jn} G /2. In fact, {jnan} and {jnbn} are also in I2. (The roles of {an} and 
{bn} can be switched with a corresponding switch of qkn for pkn.) 

This theorem is applicable in the potential problem that arises in seeking 
the steady temperature u(r9 0) in a thermally homogeneous sphere with pre­
scribed heat flux through the top half of the spherical surface and Newtonian 
heat loss through the bottom half. 

Completeness and approximation. We now establish the completeness 
of {\pn} under hypotheses weaker than those of Theorems 1 or 2 (here ajbn 

need not converge to a positive limit). 

THEOREM 3. Let {an} be a positive sequence. Let {bn} be a nonneg­
ative sequence such that either 

(i) bn > 0 for all n, or 
(ii) there is an N such that bn = 0 for n = 1, 2, . . . , N, while bn > 0 

for n> N and the subspace spanned by the N-dimensional vectors (pkl, Pk2 > 
• • • >P*iv) * = 1» 2, 3, . . . has dimension N. Then {\jjn} is complete and 
(finitely) linearly independent in R. (The roles of {an} and {bn} can be 
switched with a corresponding switch of qkn for pkn.) 

It can be easily shown that for any given ƒ G R and for any N, the solu­

tion to the system of equations 

(5) Z (**> *n)fn = (/> **) ' k=l929...9N, 
H = 1 

minimizes the expression | | S ^ = 1 / n ^ w - / | | . Combining this observation with 

the previous theorem we have the first part of 

THEOREM 4. Let the hypothesis of Theorem 3 hold and let fGR be 
given. For each N, let jx(N), j2(N), . . . > ƒ#(#) be the (unique) solution to 
the system of equations (5). Then \\ÇL3%=1jn(N)\IJn) -f\\ goes to zero as N 
approaches infinity. If, in addition, the hypotheses of Theorem I or 2 hold, 
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2%=1(tn(N) - / n ) 2 goes to zero as N approaches infinity, where {ƒ„} is the 
solution to equation (2). 

These last two theorems are applied in considering the potential problem 
involving the temperature in a sphere having prescribed temperature in the top 
half and Newtonian heat loss through the lower half. (In fact, a survey of some 
seventy papers involving dual orthogonal series shows that these last two 
theorems are sufficiently general to apply to all of them.) 
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Conformally Euclidean manifolds are one type of higher dimensional 
generalization of Riemann surfaces. They are studied and classified here from 
that point of view (cf. [2] and [3]). 

1. DEFINITION 1.1. A conformai structure on a manifold M is a covering 
{Ua} together with a metric ga on Ua such that whenever UaCi Up=£ 0 , ga 

and gp are conformally related on UaC\ Up. 
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