- H. Matsumura, Commutative algebra, Benjamin, New York, 1970.
 MR 42 #1813.
 - 12. S. McAdam, Going down and open extensions, Canad. J. Math. (to appear).
- 13. I. J. Papick, Ph. D. Dissertation, Rutgers University, New Brunswick, N. J., 1975.
- 14. M. Raynaud, Anneaux locaux henséliens, Lecture Notes in Math., vol. 169, Springer-Verlag, Berlin and New York, 1970. MR 43 #3252.
- 15. F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799. MR 31 #5880.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903

BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 81, Number 4, July 1975

G-TRANSVERSALITY

BY TED PETRIE

Communicated by Barbara Osofsky, February 4, 1975

Let G be a compact Lie group and N, M and $Y \subseteq M$ be smooth G manifolds. Suppose $f: N \longrightarrow M$ is a proper G map. We give an obstruction theory (Theorem 1) for a proper G homotopy between f and a map g transverse to Y written $f \cap Y$. In this generality we cannot say more; however, when $f: N \longrightarrow M$ is a quasi-equivalence of G vector bundles over Y, this can be considerably improved (Theorem 2) by removing the dependence of the map f. By definition f is a quasi-equivalence if N and M are G vector bundles over Y and f is proper, fiber preserving and degree 1 on fibers. To be concise we suppose G is abelian and omit applications and insights, referring to [1] and [2] for further information.

Let K be a subgroup of G and \hat{K} the set of real irreducible K modules. If Γ and Ω are real K modules, let $V_{\Gamma,\Omega}$ denote the space of surjective real K homomorphisms of Γ to Ω . By Schur's lemma $V_{\Gamma,\Omega} = \Pi_{\psi \in \hat{K}} V_{\Gamma,\Omega}^{\psi}$ where $V_{\Gamma,\Omega}^{\psi}$ has the homotopy type of the Stiefel manifold of b_{ψ} frames in the D_{ψ} vector space of dimension a_{ψ} . Here D_{ψ} is the division algebra of real K endomorphisms of ψ and $\Gamma = \Sigma_{\psi \in \hat{K}} a_{\psi} \psi$, $\Omega = \Sigma_{\psi \in \hat{K}} b_{\psi} \psi$.

722 TED PETRIE

Let L denote the set of isotropy groups of the action of G on N partially ordered by inclusion. If L has T elements, choose a 1-1 function α from L to the integers 1 through T with the property that $\alpha(K) < \alpha(H)$ if K > H. Suppose f is transverse to Y on $\bigcup_{\alpha(H) < k} N^H = Z_{k-1}$ and $\alpha(K) = k$. Without loss of generality, we may suppose $f^K \cap Y^K$ and define $X^K = (f^K)^{-1}Y^K$ where Y^K is the fixed set of K acting on Y. The G normal bundle of Y in M is denoted by $\nu(Y, M)$. Define $\nu(Y, M)_K$ to be the G complement of $\nu(Y^K, M^K)$ in $\nu(Y, M)_{|YK|}$. Define a function $\nu(K)$ from the set of components of $\nu(Y^K, M^K)$ to topological spaces whose value at a component $\nu(Y^K, M^K)$ is $\nu(Y, M)_{|YK|}$. For $\nu(Y^K, M)_{|YK|}$ and $\nu(Y^K, M)_{|YK|}$. Set $\nu(Y, M)_{|YK|}$. Set $\nu(Y, M)_{|YK|}$.

THEOREM 1. There is a sequence of obstructions

$$O_*(K) \in H^*(X^K/G, X_K/G, \pi_{*-1}(V(K)))$$

(in the sense that $O_j(K)$ is defined if $O_i(K) = 0$ for i < j) whose vanishing implies f is properly G homotopic f to a function transverse to f on f.

THEOREM 2. Let $f' \colon N \to M$ be a quasi-equivalence of G vector bundles over Y. Suppose f is propertly G-homotopic to f' and is transverse to Y on Z_{k-1} and $f^k \cap Y^K$. There are obstructions

$$O'_{\star}(K) \in H^{\star}(Y^K/G, Y_K/G, \pi_{\star-1}(V'(K)))$$

whose vanishing implies f is properly G homotopic $tel Z_k$ to a function transverse to Y on Z_k . (Here V'(K) is a function of the components of Y^K .)

REFERENCES

- 1. T. Petrie, Obstructions to transversality for compact Lie groups, Bull. Amer. Math. Soc. 80 (1974), 1133-1136.
- 2. ———, Equivariant quasi-equivalence, transversality and normal cobordism, Proc. Internat. Congress Math. (Vancouver, 1974), Canadian Mathematical Congress (to appear).

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, HILL CENTER FOR MATHEMATICAL SCIENCES, NEW BRUNSWICK, NEW JERSEY 08903