
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 81, Numoer 4, July 1975 

TOPOLOGICALLY DEFINED CLASSES 

OF GOING-DOWN DOMAINS 

BY IRA J. PAPICK1 

Communicated by Robert Fossum, February 12, 1975 

1. Introduction. This note announces some results which build upon the 
studies of Dobbs [3], [4] and Dobbs and Papick [5] on going-down exten­
sions and going-down domains. Whereas much of [4] was motivated by flat­
ness (cf. [ I l , 5.D], [15]), the present work has a topological stimulus (cf. [7], 
[8, Proposition 1.10.13(a), (b ' )] , [10, pp. 145-160], [12], [14, Corollaire 2, 
p. 42] ). We introduce and study new topologically defined classes of going-
down domains, by considering how various going-down conditions on a domain 
R and its overrings relate to conditions on the topological space Spec(#). 

Details, as well as a systematic study of the behavior of various classes of 
going-down domains under homomorphic images, localization and globalization, 
integral change of rings, and the "D 4- M construction", will appear elsewhere. 

2. Notation. Let P (respectively, Q) be a property which may be satis­
fied by an extension of (commutative integral) domains (respectively, by the 
map induced on prime spectra by an extension of domains). A domain R is a 
? domain (respectively, (^domain) if R C Irrespectively, Spec(r) —• 
Spec(/?)) satisfies P(respectively, Q) for each overring T of R. 

3. Going-down domains and /-domains. In this section, we introduce 

tools needed for the remaining sections, and at the same time extend and 

clarify notions already present in the literature. Recall from [4] and [5] that 

a domain R is called agoing-down domain (written R is GD) in case we take 

P = GD; and R is said to be treed if Spec(Z?), a s a partially ordered set under 

inclusion, is a tree. In [4], it is shown that a GD domain must be treed; an 

example of Lewis, described in [13], shows that the converse need not be true. 

By taking P = mated (as defined by Dawson and Dobbs [2] ) and Q = injec-
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tive, we use a corollary of Zariski's main theorem [14, Corollaire 2, p. 42] to 
show 

PROPOSITION 3.1. R is a mated domain «=> R is an i (nfective)-domain. 

COROLLARY 3.2. Every overring of an i-domain is GD. 

Observe that R is an /-domain if and only if RM is an /-domain for each 
maximal ideal M of R. The local case is summarized next. Note first that 
Brase [1] and Dobbs [6] independently considered the condition that/?, the 
integral closure of R, be valuation. 

PROPOSITION 3.3. R is a local i-domain *=> R is a valuation ring <=*• 

each overring ofR is local 

THEOREM 3.4. R is an i-domain <=> R is Prüfer and Spec(i? ) —• 
Spec (R) is infective. 

4. Open domains. By taking £ = open, we obtain open domains; by 
restricting to all overrings T of R other than its quotient field, we get propen 

(properly open) domains. We obtain below a characterization of open domains. 
As propen domains are treed and semilocal (the latter by virtue of (quasi-) 
compactness of prime spectra), combinatorial methods work well. If M is a 
maximal ideal of R we call {P G Spec(R) : P CM} a branch ofR, and establish 

THEOREM 4.1. R is open «=• R is GD, R is semilocal, and each branch 
ofR is well-ordered under inclusion <=* R is a propen G(oldman)-domain 
«=> Spec(K) —• Spec(R) is open for each valuation overring V of R <=> 
Spec(r) —• Spec(R) is open for each domain T containing R. 

5. Local homeomorphism domains. In this section we consider Q = 
local homeomorphism (LH), and study the relationship of LH-domains with 
previously defined classes of domains. We say R has finite fibers if Spec(r) 
—• Spec(i?) has finite fibers for each overring T of R. We prove 

THEOREM 5.1. R is an LH-domain «=• each overring ofR is open <=> 
R is open, R has finite fibers, and each overring ofR is treed. 

6. Propen not open domains. In this section we consider domains R 

which are propen but not open. Using the methods of W. J. Lewis [9], one 
can construct several pertinent examples of such domains. For a treed domain 
R9 call {P E Spec(R) : P C J(R)} the trunk of R [denoted tt(R)] ; call the 
prime \J{P G Spec(R): P G tr(R)} the vertex of R [denoted v(R)] and let 
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[0, P) = {Q e Spec(R): Q C P}. We prove 

PROPOSITION 6.1. If R is propen not open, then tv(R) is an infinite set 

(whence, v(R) ¥= 0). 

PROPOSITION 6.2. R is propen not open <=» is GD, [0, P] is open for 

each nonzero P G Spec(R), ATW/ «o overring of R other than its quotient field 

is a G-domain. 

PROPOSITION 6.3. Let R be local Then R is propen not open <=* R 

is GD, [0, P] is open for each nonzero P G Spec(R), and R is not a G-domain. 

We remark that the condition that [0, P] be open, which appears in 

(6.2) and (6.3), may be characterized without explicit reference to topology [13]. 

THEOREM 6.4. R is propen not open and R/v(R) is GD <==> R is GD, 

RV(R) is propen not open, and R/v(R) is open. 

The principal applications of Theorem 6.4 are to Bézout domains. By 
means of Lewis' methods of constructing Bézout domains [9, Theorem 3.1], 
we infer that the spectrum of an arbitrary propen not open domain is obtained 
topologically as a quotient space of the disjoint union of the spectrum of an 
open domain and the spectrum of a local propen not open domain. 
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Let G be a compact Lie group and N, M and Y C M be smooth G mani­
folds. Suppose ƒ: N—• M is a proper G map. We give an obstruction theory 
(Theorem 1) for a proper G homotopy between ƒ and a map g transverse to 
Y written ƒ (t) Y. In this generality we cannot say more; however, when ƒ: N 

—• M is a quasi-equivalence of G vector bundles over Y, this can be consider­
ably improved (Theorem 2) by removing the dependence of the map f. By 
definition ƒ is a quasi-equivalence if N and M are G vector bundles over Y and 
ƒ is proper, fiber preserving and degree 1 on fibers. To be concise we suppose 

G is abelian and omit applications and insights, referring to [1] and [2] for 
further information. 

Let A" be a subgroup of G and R the set of real irreducible K modules. 
If T and 12 are real K modules, let VT a denote the space of surjective real K 

homomorphisms of V to 12. By Schur's lemma VT n = n^e^Fjf! n where 
Vr,n ha s ^ homotopy type of the Stiefel manifold of b^ frames in the D^ 

vector space of dimension a^. Here D^ is the division algebra of real K endo-
morphisms of \p and T = 2 ^ G ^ ^ i//, 12 = 2 ^ e £ b^ i//. 
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