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1. Introduction. Let X: T —* T' be a Q-isogeny of algebraic tori defined 
over Q, the rational number field. Then the isogeny X induces naturally the 
following maps (cf. [2] ): 

\ r Tv • Tv, X£: 7^ —• T £, X^: TQ • T Q, (X)Q: (T )Q —> (7)Q. 

For a homomorphism oc: G —• G' of commutative groups with finite kernel 
and cokernel, we define the qr-symbol of a by q(a) = [Cok a] /[Ker a ] . Then 
the (/-symbols of the above maps are defined, and <?(X£) = 1 for almost all 
finite prime v; more precisely, if K is a finite splitting field for T and T' over 
Q, then <y(X£) = 1 whenever v is prime to the degree of X and is unramified 
relative to K/Q. In [2], we prove 

THEOREM 1. The relative class number hT/hT> of T, T' over Q can be 
expressed as 

I I «(AS). 

where TT (resp. TT') is the Tamagawa number of T (resp. T') over Q. 

In this paper, we apply Theorem 1 to the study of the norm form of a 
finite Galois extension over Q. 

2. Main theorem. Let K/Q be a Galois extension of finite degree n. 
Denote by N the norm map ^^/Q(Gm) —• Gm, where Gm is the multiplica­
tive group of the universal domain £2, and RK ,Q is the Weil functor of restrict­
ing the field of definition from K to Q (cf. [3] ). We have an exact sequence 
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(N) 0 - * K e r 7 V - ù ^ / Q ( G m ) - ^ G m - * 0 

of tori defined over Q, where i is the canonical inclusion. We attach to (N) a 
Q-isogeny X: RK/Q(Gm) —• Ker N x Gm defined by X(x) = (*"#(*)"1, 
iV(x)). Applying Theorem 1 to the isogeny X, we obtain 

THEOREM 2. Let K, X £>e as above. Then we have 

_h± g(X,) 

** ~ T. ' <7(XQMX)Q) ' n . * ( X S ) ' 

w/iere A^ is the class number of K, and hx (resp. rx) is the class number 
(resp. the Tamagawa number) of the torus Ker TV over Q. 

Let {xt, ... . , xn} be an integral basis of K The form ƒ defined by 

AX,, . . . ,Xn)=NK/Q(xlX1 +••• +x„Xn) 

is an integral form in n variables of degree n. The general linear group GLW(£2) 
acts on the set of forms in n variables as follows: if w G GLW(£2) and g is a 
form in n variables, then (gu)(Xt, . . . , Xn) = g(Y19 . . . , Yn) with 
(Yt, . . . , YnY = u(Xx, . . . , XnY. We identify the torus RK/Q(Gm) with 
a subgroup of GLW(T2) by means of the basis {xt, . . . , xn}. Two integral 
forms g, g in n variables are said to be in the same £-class if g — gz 
with z in the set RK/Q(Gm)z of elements of RK/Q(Gm) n Mn(Zy. Also, 
#, #' are said to be in the same A'-genus if g = gt with t in the set 
^K/Q^m^Q °f e l e m e n t s of ^ £ / Q ( G W ) with rational coefficients, and g = guv 

with u = (Wy)y G /?A:/Q(Gm)X = ^Ar/Q(Gm)00 x n^ 0 0 ^^ / Q (G m ) Z ü , where 
RK/Q(Gm)v (resP- /e/c/Q(Gm)zü) denotes the set of elements of RK/Q(Gm) 
with coefficients in Qv (resp. ̂ ^/g(Gm) n MW(ZU)JC). Let // denote the ker­
nel of the norm map N: R^/Q^m) —*• Gm. 

MAIN THEOREM. There exists an injection V of the set of K-classes in 
the K-genus of f into the quotient space HA/H^ • HQ. Moreover, if the class 
number of K equals 1, then ^ is a bifection and the number of K-classes in 
the K-genus off is given by 

(1) rx • q(\QM%)lq(K)npq(\;i 

Tt and the q-symbols being as in Theorem 2. 

SKETCH OF THE PROOF. Take a AT-class \g] in the AT-genus off. By 
definition, we have g = ft with t G ^^/o(Gm)Q , and g = fuv with u - (uv\ 
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G ̂ £/Q(Gm)A . TWS implies that ƒ = fuvt~
l for all v. Putting sv = uvt~*, 

we have sv G Hv for all u, and sv G Hz for almost all finite prime v. Hence, 
s = (s„) G # A . We verify that the map defined by *([#]) = s(H£ • # Q ) , is 
the desired injection. Furthermore, suppose that the class number of K is 1, 
i.e., *K / Q (G m ) A = * * / Q ( G » , ) Î * * K / Q ( G W ) Q . Take any coset *(#£ • HQ) 

M HJHA ' HQ' S i n c e S = (5A G #A C RK/Q(Gm)A> w e c a n Write S = "' 
with u = (wv) G / ^ ^ ( G ^ X and f G % / Q ( G m ) Q , i.e., sv = Wür for all v. 
Then, f = fsv = /i/yf because 5 = ( s ^ G HA. From this follows that the K-
class of the form g defined by g = /tiv = ƒ*""1 is in the ZT-genus of/, and 
V([g]) = S ( # A ' ^ Q ) - The last assertion is an immediate consequence of 
Theorem 2. 

REMARK. If K is a finite abelian extension over Q, the number TX • 
QO^)Q(OOQ)IQÇ^OO)^PCIO<P) can be effectively computed by means of results 
in class field theory (cf. [2] ). For example, if K = Q(y/m) is a quadratic 
field, we have rx = 2 (cf. [1]), ?((X)Q) = 1, tfX..) = 1, 

[2 if m < 0, or m > 0 and NK/Q(e) = - 1 , 

U i f w > 0 a n d ^ / Q ( € ) = 1, 

where e is a fundamental unit in A", and Upq(Kp) = 2t + *, where f is the num­
ber of distinct prime factors of the discriminant dK of K. 
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