
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 81, Number 3, May 1975 

APPLICATIONS OF DUSCHEK'S FORMULA TO COSMOLOGY 
AND MINIMAL SURFACES 

BY THEODORE FRANKEL1 

Communicated by Shlomo Sternberg, December 2, 1974 

1. The second variation formula. Let Af1*1 be a Riemannian or pseudo-
Riemannian manifold and let V*1 be a compact submanifold (perhaps with 
boundary) with global unit normal vector field u. We assume u is non-null. 
Let eu = <«, u ) = ± 1 be its "indicator". If M is pseudo-Riemannian we 
demand that Vbe "space-like", i.e. eu = - 1 . Consider a smooth 1-parameter 
variation Vt of V such that each Vt is an embedded submanifold. Each sheet 
Vt has a unit normal vector field (again called u) and we demand that the 
variation vector field/ always be normal to its sheet, i.e. / = \çu for some 
smooth <£. The first variation of «-volume is classically given by 

vol'(0 = - f *Hdv 

where vol(t) = vol(F^), H is the mean curvature function for Vv and dv is 
the volume form. 

THEOREM 1. For second variation we have 

vol"(f) = -eu fVf<p V2 fdv - $vH*ftdv 

+ ƒ [Ric(M, u) + eu(Rv-R)] *2dv. 
V t 

Here Ric is the Ricci quadratic form for M, R is the scalar curvature of 
M, Rv is the scalar curvature of Vt and V2 is the Laplace-Beltrami operator 
for Vt ; both Rv and V2 are constructed from the induced Riemannian metric 
on Vv 

While this formula is not explicitly given by Duschek in [2] it is certainly 
implied by other equations appearing there (see his equation (5, 14)). The 
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classical Duschek formula involves the second fundamental form b for the 
hypersurface Vt in the special combination H2 - ti(b2) = (tr b)2 - tr(b2) = 

2 2a<j3KaK0, where KX, . . . , nn are the principal curvatures of Vv i.e. the 
eigenvalues of b. However, if we write 

tx(b A b) = £ KaKp 

and use the fact (Gauss equations) 

-XMURV + tr(Z> A i ) = E(u, u) 

where E(u, u) = Ric(a, u) - lAeuR is the quadratic form associated with the 
Einstein tensor, we immediately get Theorem 1. 

2. Minimal submanifolds of a Riemannian Af1*1. V1 is a minimal 
submanifold of M1 + 1 if H = 0. 

COROLLARY, /ƒ F" ft a minimal submanifold of a Riemannian Af1*1 

of vanishing Ricci curvature then for normal variations 

vol"(0) = ƒ [ip2Rv - <p V2 ^] rfu. 

This generalizes the classical formula (see [1, p. 258]) in the case of a 
surface V2 C R3, in which case / ? K = 2A" is twice the Gauss curvature of V. 

Recall that a minimal compact submanifold Vr C 3f*+1 without bound­
ary is staWe if vol"(0) > 0 for 0// variations of V\ here vol represents the 
r-volume of V. 

THEOREM 2. Let M3 be an orientable 3-manifold with nonpositive 
sectional curvatures -b < KM < -c < 0. Z,ef F2 2>e 0 c/ose<i orientable 
minimal surface of genus g in M3. Then if V is stable its area A satisfies 

cA/4ir <(g-l)< (3b - C)A/4TT. 

This follows from Theorem 1, using the unit normal variation vector 
/ = ut and the Gauss-Bonnet theorem. 

COROLLARY. Let M3 be a compact orientable 3-manifold with strictly 
negative sectional curvatures -b < KM < -c < 0. Then any closed orientable 
surface (or closed integral current in the sense of Fédérer and Fleming) of area 
<4n(3b - c)~l bounds. 
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This follows from Theorem 2 and deep results of Fédérer, Fleming, 
Almgren, and Lawson, to the effect that any a G #w(Af + 1 ; Z), for n < 6, 
has a representative of least «-volume given by a union of closed stable minimal 
hypersurfaces (see [4, p. L5—45]). 

3. Cosmological expansion. Consider a space time M4 filled with a 
perfect fluid of rest density p, pressure p, and unit velocity 4-vector u. Say 
that p is spatially constant if dp(X) = 0 for all X orthogonal to u. Let K be 
the gravitational constant. 

THEOREM 3. Let Af4 be a space time universe filled with a perfect 
fluid whose pressure is spatially constant. Suppose that there exists a compact 
spatial hypersurface V\ {with or without boundary) that is everywhere ortho­
gonal to u. Then the volume vol(f) = vol(F^), t proper seconds later, of that 
portion of the fluid initially in V\ satisfies 

vol"(0 = ƒ [12TTK(P - p) - RV) dv. 
v t 

This follows from Theorem 1, the Einstein equations E(u, ü) = 
STTKTXU, Ü) relating the Einstein tensor to the stress-energy-momentum tensor, 
and the fact that the world lines of the fluid are geodesies in M4 since p is 
spatially constant. 

The fluid is an incoherent dust if p = 0. 

COROLLARY. If we have an incoherent dust satisfying the hypotheses 
of Theorem 3, then 

vol"(f)= l2mM- ƒ Rvdv 
vt 

where M is the mass of the fluid in V0. Thus if the spatial universe is initially 
expanding in volume, then the volume expansion accelerates so long as 
fRydv < l2mMand decelerates when fRvdu > UTTKM. 

This is illustrated by the classical Friedman cosmological models (see 
[3, pp. 112-125]) which employ spatial sections of spatially constant sec­
tional curvatures. (If one insists on a nonvanishing cosmological constant A 
one should replace ~RV in the above formulas by 3A - Rv.) 

De tails will appear elsewhere. 
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