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Strong rigidity of locally symmetric spaces, by G. D. Mostow, Princeton 
University Press (Annals of Mathematics Studies, No. 78) 1973, 
v+195pp., $7.00 

This monograph is primarily devoted to a proof of the following fun­
damental theorem (which for the sake of simplicity the reviewer states in 
less than its fullest generality, i.e. for simple groups rather than semi-
simple groups). 

STRONG RIGIDITY THEOREM. Let G and G' be two simple noncompact 
connected Lie groups without centers and not locally isomorphic to SL(29 R). 
Suppose Y c: G and Y' c: G' are discrete subgroups such that G\Y and 
G'jY' are compact. Then any isomorphism OofY onto Y' extends to an 
isomorphism 6 of G onto G'. 

The extension 6 is actually unique (see below). (We recall that a con­
nected Lie group is called simple if it is nonabelian and has no proper 
normal subgroup of dimension >0. The lowest dimension of a simple 
Lie group is 3 and if it is in addition noncompact it is locally isomorphic 
to SL(2, R)9 the group of 2x2 real matrices with determinant 1.) 

In more geometric language, the theorem means that a compact irre­
ducible locally symmetric space (see below) of nonpositive curvature and 
dimension >2 is uniquely determined up to isometry (and a normalizing 
factor) by its fundamental group. This theorem has an interesting back­
ground which is perhaps best explained by recalling a few facts concerning 
the exceptional case SL(29 R). 

If F is a compact Riemann surface, its homology group HX(Y9Z) 
has a basis of 1-cycles al9bl9- • • 9ag9bg which viewed as loops generate 
the fundamental group ^ ( 7 ) and satisfy the single relation 

(1) ajt^bf1 • • • afb? = 1. 
The integer g is called the genus. In particular, two Riemann surfaces of 
the same genus have isomorphic fundamental groups. Let Y and Y' be 
two such Riemann surfaces of genus > 1. As a consequence of uniformi-
zation theory, Zand Y' can be written as orbit spaces 
(2) Y = T\X9 r = T'\X 
where X is the upper half-plane, Y and Y' are discrete subgroups of the 
group G=SL(29 R)l±l of conformai homeomorphisms of X. The groups 
r and Y' have no fixed point and are isomorphic to the fundamental 
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groups of Y and Y', respectively. From this follows readily that Y and 
Y' are conformally equivalent if and only if V and V' are conjugate 
inG. 

According to Riemann's problem of moduli, the set of conformai 
equivalence classes of compact Riemann surfaces of a given genus g> 1 
is a "space" of dimension 6g—6. This means that the group V can be 
deformed continuously according to a (6#—6)-dimensional parameter a 
such that the deformed groups Ta are nonconjugate in G and make 
F^Z compact. The description above of the fundamental group ^ ( F ^ r 
explains 6g—6 in a well-known fashion: Each of the 2g generators lies 
in the three-dimensional group G; subtraction of three parameters deter­
mined by (1) and three more coming from conjugacy under G gives the 
number 3 • 2g—3-3=6#-6. 

In the introduction, Mostow describes the work of Selberg, Calabi-
Vesentini, Calabi and Weil (1960-1962) which showed that this type of 
deformation is not possible for noncompact simple Lie groups G of dimen­
sion >3. In fact, for such a G, any discrete cocompact subgroup T is 
locally rigid, that is it cannot be continuously deformed except trivially, 
i.e. by means of inner automorphisms of G. (T cocompact means GjY 
compact.) As Mostow explains in the introduction his work was prompted 
by a search for a geometric explanation of the above local rigidity of T 
in terms of the boundary of the symmetric space associated with G. His 
strong rigidity theorem not only proves that isomorphic subgroups T 
and T' are necessarily conjugate under an automorphism of G, but also 
that all automorphisms of T are induced by automorphisms of G; the 
latter being mostly inner automorphisms, this implies considerable 
limitations on T as an abstract group for it to be imbeddable in G as a 
discrete cocompact subgroup. 

We shall now give a rough description of the main steps in the author's 
remarkable proof. Let KczG and K'<^G' be maximal compact subgroups 
(unique up to conjugacy) and X=G/K9 X'^G'jK' the associated symmetric 
spaces. (É. Cartan proved that G has an involutive automorphism with 
fixed point set K\ this induces an involution on X with an arbitrarily 
prescribed point as a unique fixed point; hence the term "symmetric".) In 
the case when X and X' have constant curvature the author proved the 
theorem in a 1968 paper using the concept of a quasi-conformal mapping; 
for the general case he introduces the key notion of a pseudo-isometry 
for a map q> from a metric space M to a. metric space M': given constants 
&_1, 6 = 0 , <p is a (k, 6)-pseudo-isometry if 
(3) d(<p(x), <p(y)) = kd(x9 y)9 for x9yeM; 

(4) d(cp(x),<p(y))^k-id(x9y)9 
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for x,yeM such that d(x,y)^b, d denoting distance. This seemingly 
unwieldy notion turns out to be most effective. 

The group V being necessarily finitely generated it has, by a lemma of 
Selberg, a torsion-free normal subgroup of finite index. This can be used 
to reduce the theorem to the case when F and T' are torsion-free (as will 
now be assumed). 

(i) There exists a pseudo-isometry <p:X-+X' compatible with 0. 
To indicate the construction note that the assumption on Y implies 

that it has no fixed points so Y\X is a compact differentiable manifold. 
By triangulation Y\X becomes a finite simplicial complex. By standard 
topology there exists a continuous map <p:X->X' compatible with 0 
such that the induced map y:Y\X-+Y'\X' is simplicial; in particular, 
(p satisfies a Lipschitz condition which readily implies that <p satisfies (3). 

The verification of (4) requires additional geometric information about 
X, namely that each y G Y leaves a geodesic Ya X stable and that such a 
geodesic satisfies 

inf d(x, yx) = inf d(y, yy). 
xeX ye Y 

This identity, used on X', implies quite simply that if 2r' is the length of 
the shortest geodesies in Y'\X' then the natural map IT':X'-+Y'\X' is 
injective on each ball of radius <r ' . This suffices for the verification 
of (4). 

(ii) Let cp:X-+X' be a continuous map satisfying (4). Then dimX'^ 
dim X. If the equality sign holds then <p is surjective. 

This is first proved for Euclidean spaces by topological methods. The 
analog for X and X' then results from the fact that the exponential map­
ping at a point p e X is a length-increasing map of the tangent space Xp 

onto X. Combining these two steps (i), (ii) we see that Zand X' have the 
same dimension. 

By a flat in X is meant a flat totally geodesic submanifold of X. The 
rank of Zis by definition the maximum dimension of flats in X. The author 
now gives a simple proof of the known fact that the rank of X is also the 
highest rank among the abelian subgroups of I\ In particular, X and X' 
have the same rank r, a fact that had been pointed out by J. Wolf. 

In §6 the author undertakes a detailed investigation of the orthogonal 
projection of X onto a flat Fa X. This is used in §7 to give a precise esti­
mate of the length of the intersection of a geodesic with a tubular neigh­
borhood of another geodesic. But the high point of §7 is a description of 
the intersection of an r-flat Fin X with a tubular neighborhood of another 
flat F0 (it is approximately a splice as defined below). These geometric 
investigations (which do not involve Y) are fundamental for the remaining 
steps in the proof. 
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(iii) Let SF and !F\ respectively, denote the spaces ofr-flats in X and 
in X\ There exists a constant v with the following property: for each Fe& 
there exists a unique F' e y such that (hd denoting Hausdorff distancé) 
hd((p(F),F')<v. The mapping <p:F-+F' is a homeomorphism of 3P onto 
&'. 

We recall that the Hausdorff distance of two subsets A, B of a metric 
space is the infimum of the numbers r such that A lies in an r-tube around 
B and B in an r-tube around A. 

Step (iii) is now refined by means of the notion of a splice. Let F^F^elF 
and x eF. Then F0 nx F denotes the union of all geodesic rays in F 
having origin x and contained in some tubular neighborhood of F0. 
Such a set is called a splice. On the other hand the Euclidean space F is 
divided up into (Weyl) chambers by means of certain hyperplanes through 
the origin x; each splice is a union of chambers and chamber walls. The 
maximal boundary X0 of X (in the sense of Furstenberg, Karpelevic 
and Satake) can be defined as the set of equivalence classes of chambers 
in X, two subsets of X being called equivalent if they have a finite Haus­
dorff distance. 

(iv) For any F9F0elF and any p eF,p' e y(F) 

(5) hd(<p(F0 n9 F), <p(F0) r v m < oo. 

Consequently, if C(X) denotes the set of equivalence classes of splices 
in X, we have a bijection 

(6) 9*:C(X)-+C(xy 

But since the chambers can be characterized among the splices, (6) implies 
that cp induces a bijection (p0 of X0 into X'Q. That <p0 is a homeomorphism 
of X0 onto XQ results from the following refinement of (iii). 

(v) There exists a constant c>0 with the following property: for each 
chamber F+ in X there exists a chamber F'+ in X'such that hd(q>(F+), F+)<c. 

COMPLETION OF THE PROOF. Let r(G) denote the set of parabolic 
subgroups of G. According to a basic theorem of Tits (which the author 
has to extend to not necessarily algebraic groups) the group G can be, in 
a certain precise sense, determined by the lattice structure of T(G), pro­
vided G has no center and the rank r is >1. 

Let S be a geodesic ray or a chamber wall or a chamber in X. Then the 
set of g G G for which the sets S and gS are equivalent is a parabolic 
subgroup F(S) and the mapping S-+P(S) induces a bijection of a subset 
of C(X) onto T(G). The bijection cp* in (6) therefore furnishes the desired 
isomorphism of G onto G' (provided r>l). 

If the rank r is one, a different argument is needed. In this case it is 
known by classification that the space X is a hyperbolic space H% where 
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JSTis either the real numbers, the complex numbers, the quaternions or the 
Cayley numbers (with n=2). Mostow modifies the known models of 
these spaces in a very efficient manner so that they are in all cases the 
unit ball in Kn with a unified formula for the metric (p. 144). This inno­
vation is particularly welcome and from that point on the classification is 
virtually unnecessary. In a natural way the author generalizes the concept 
of a quasiconformal mapping to a iT-quasiconformal mapping over K 
and proves by deep geometric analysis that the boundary map cv X0-+XÓ 
is not only a homeomorphism (cf. (iv)) but is iT-quasiconformal. (Here 
X0 and XQ are spheres). Except for the case dim X0=l (G=5X(2, R)l±l) 
the author deduces a smoothness property for q>0, which quickly implies 
X=X', G=G'. Using an ergodicity property of the group of transvections 
along a geodesic, acting on GjT, the author proves with great virtuosity 
that <p0 sends JT-spheres into JT-spheres and finally that cp0 is induced by 
an automorphism of G, extending 0, completing the proof. 

The proof applies for the most part also to the case when the compact­
ness assumption about GjT is replaced by the weaker hypothesis of finite 
G-invariant measure (r is then called a lattice). In fact, only in (i) is the 
compactness essential. Combining this work with subsequent contributions 
of Margulis (for r>l) and Prasad (for r=l , sharpening an earlier result 
of Garland-Ragunathan) the strong rigidity is in fact established for 
lattices. (Local rigidity, at least for arithmetic lattices T, was known 
before as a result of work of Borel, Garland and Ragunathan.) 

It seems clear that the geometric methods introduced in this work will 
influence further studies of symmetric spaces, far beyond rigidity questions. 
Among the author's simpler results of general interest we quote the fol­
lowing: the infimum of the displacement d(x, gx) effected by an isometry g 
of the symmetric space X is 

[4 Tr(log pol g)2]1/2 (pol = polar part). 

The infimum is attained if and only if g is semisimple; the points in X of 
minimum displacement form a totally geodesic subspace on which the 
centralizer of g in G operates transitively. For results of this type Mostow 
uses his old method of imbedding l a s a totally geodesic subspace in the 
space of positive definite matrices; this results in direct elementary proofs 
requiring hardly any tools from differential geometry. In various other 
ways the author has succeeded in making the exposition relatively self-
contained and, happily, free of "exercises" as a substitute for omitted 
proofs, resulting in an up-to-date treatment of the rigidity question which 
is easily accessible to anyone with minimum background in the theory of 
semisimple Lie groups and symmetric spaces. 
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ERRATA (Communicated by the author) 
Should read 

lï-rank G 

T\X 
Sp(l9n)ISp(l)xSp(n) 
projective space P% as cyclic JT-subspaces of 

Kn+1, represent them as hermitian projections 
onto cyclic iT-subspaces of Kn+1 with respect to 

HI 
' - • 6 extends to a unique analytic isomor­

phism • • • 
p. 187 line 6 • • • from Theorem 18.1, Corollary 23.6, and 

Lemma 8.6. 
SlGURDUR HELGASON 

Complete normed algebras, by F. F. Bonsall and J. Duncan, Ergebnisse 
der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, 
New York, Heidelberg, Berlin 1973, x+301 pp. $26.20 

It was in 1939 that I. M. Gelfand [10] announced the results of his 
pioneering investigations of Normed Rings, thereby launching a new 
field of mathematical research which continues 35 years later in a state of 
vigorous development. For Gelfand, a normed ring was in fact a com­
plete normed algebra; i.e., an algebra for which the underlying vector 
space is a (usually complex) Banach space and multiplication is continuous 
with respect to the given Banach space norm. Continuity of multiplication 
is usually provided by imposing the multiplicative inequality, ||xy||^ 
||x|| ||ƒ ||, on the norm. For obvious reasons, these algebras have come to 
be known as "Banach algebras", a term which is now rather firmly estab­
lished in the literature.1 Such algebras were in fact studied earlier by 
M. Nagumo [18] and K. Yosida [26] who called them "metric rings". 
Also, as might be expected, some of the concepts arising in the earlier 
study of operators on a Banach space, as well as the study of certain 

1 The authors remark (p. 4) that they would have preferred the term "Gelfand 
algebra" for a complete normed algebra. Although the reviewer had much to do with 
establishing the term "Banach algebra" and has a strong preference for terminology 
that suggests the nature of the indicated object, he agrees that "Gelfand algebra" 
would have been a most appropriate choice. Since this book will no doubt be widely 
accepted, the authors, given the courage of their convictions, probably could have 
effected the change. 


