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In this note we announce some new results concerning the spectral the-
ory of measures as convolution operators. To state our principal theorem, we
introduce the following notation. If X is a Banach space and T is a bounded
linear operator on X, we write sp(7, X) to denote the spectrum of T on X.
Let G be an LCA group with dual group I'. M(G) will denote the class of
finite regular Borel measures on G, and My(G) = {u € M(G) | & vanishes at
infinity on I'}. For u € M(G), let T,, denote the operator defined by 7,(f)
= u #* f, that is, convolutions with u. Finally, let ! be the natural domain
of the Hilbert transform on L,(R), and let Lip o denote the usual class of
bounded functions on R satisfying a Lipschitz condition of order a, 0 < &
< 1. We can now state our main result.

THEOREM 1. There exists a measure u € My(R) such that
(a) sp(T,,H") # iR) U {0}, and
() sp(T,, Lip @) # 4(R) U {0}, 0 <a < 1.

This may be viewed as an analogue of the now classical Wiener-Pitt the-
orem concerning the invertibility of Fourier-Stieltjes transforms [4, Theorem
5.3.4]. Moreover, an elementary interpolation argument shows that if 1 <
p<e,

sp(T,. L,) = 5®) U {0},
for all v € M (R) (see [1, §1.4]). Thus, in a sense, our theorem is inter-

mediate between the L, and Lp (1 < p < =) cases.
The proof of Theorem 1 is based on the following result.

THEOREM 2. Let
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_f 1/s ifo<x<§/2,
Vs = {— 15 if—8/2<x<0.

Then there exists a measure v € My(R), of total variation norm 1, which satis-

fies

(*) lim sup I/ * sl =1,
§—0

forallj=1,2,+--.

The expression (*) arises since, as is readily verified,

lim sup I T I, <clTl
6—>0p (‘I/a) 1 oY

for every bounded linear operator T on H'. Here C is an absolute constant
and IT “o(Hl) denotes the operator norm of T on H'. Moreover, if g €
L,(R), lims_,  llg * ysl, =0. Thereforg, the expression (*) provides us with
a lower bound for the norms (T, — Tg)’llo(Hl),j =1,2,...,for every
g € L,(R). Consequently, since ¥ vanishes at infinity, we have for appropriate
fEL,(R) that 7 — fll, gy <1, whereas the spectral radius of the operator

T,_,on H' is at least 1.

A similar argument also applies to the space Lip a and certain of its
variants, specifically, certain of the Taibleson spaces (see [5]). Thus Theorem
1 follows from Theorem 2 (with u = » — f).

The objects of study on Theorem 2 are measures of Cantor-Lebesgue type,
which are subject to certain arithmetic constraints. Specifically, we examine
infinite Bernoulli convolutions of the form

y =
k

I *8

OB+ %,),

where the positive sequence {t; }€ [, is chosen so that

) tyy/ty >0 ask—oo,and t, > Z._ . t,n=12,...,

(2) ¥ vanishes at infinity on R, and

(3) {#} is fully independent, that is, if {n,} is any bounded sequence
of integers, and if Z,_, n;t, =0, thenn, =0,k =1,2,---.

The existence of such sequences is guaranteed by probabilistic consider-
ations (see [3, pp. 256—258]).

The proof of Theorem 2 then consists largely of a careful study of the
j-fold sum of the Cantor set {Z,_, €., 1€, = 0 or 1} generated by sequences



1975] HARDY AND LIPSCHITZ SPACES 505

{t,} of the above form. In particular, we show that the j-fold sum itself
“looks like” a Cantor-type set which has been constructed in a “regular” way.
We then integrate along the gaps arising at the various stages of the construc-
tion, to obtain estimate (*) in Theorem 2.

Finally, we remark that the techniques used here also yield the analogue
of Theorem 1 for the circle group. Further results, detailed proofs, and some

applications of this theory will appear in [6].
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