PROPER T-MAPS OF T-MODULES

BY ALAN A. MEYERHOFF

Communicated by Glen E. Bredon, October 24, 1974

In investigating homotopy equivalences of smooth G-manifolds where G is a compact Lie group, Petrie [3], [4], [5] makes use of proper G-maps of degree 1 from one G-module to another of the same complex dimension. The first nontrivial example of such a map, called a quasi-equivalence, was given by Petrie [6] for two-dimensional S^1 -modules. Necessary and sufficient conditions for the existence of a quasi-equivalence when G is any compact Lie group are now known [2]. For simplicity, the case where G is a torus T is outlined here.

Definitions and notation. Let M and N be T-modules of the same dimension, and let \hat{T} be the group of irreducible T-modules. If there is a T-module Q such that a quasi-equivalence $\omega \colon N+Q\to M+Q$ exists we say that there is a stable quasi-equivalence of N to M, and we write $N\leqslant M$. Let $P=(p_1,\cdots,p_u)$ be a set of pairwise relatively prime integers with $u\geqslant 2$, or P=(-1), and let $P=\Pi(\psi^{P_i}-1)$ be the associated Adams operation in R(T), the complex representation ring of T. Petrie has conjectured this

THEOREM. $N \leq M$ iff there are nonnegative integers $a_{\mathbf{P},\chi}$ such that $M - N = \sum_{\chi \in \hat{T}} \sum_{\mathbf{P}} a_{\mathbf{P},\chi} \mathbf{P} \chi$, in R(T).

The proof [1] uses K_T -theory for the necessity in an argument suggested by Petrie. The sufficiency is shown by constructing the required maps.

Let any T-module X be written as $X^T + X_T$, where X^T is the set fixed pointwise by the action of T. If $N \le M$, then the fact that $\omega \colon N + Q \to M + Q$ is equivariant and proper leads, by an argument using a commutative diagram in K_T -theory, to

- (i) dim $M^T = \dim N^T$, and
- (ii) $r(t) = (\lambda_{-1}(M_T))/(\lambda_{-1}(N_T)) \in R(T)$, where $t = (t_1, \dots, t_n) \in T$ represents the indeterminates in the expression for R(T) as a Laurent polynomial ring over the integers.

The fact that ω has degree 1 requires

(iii)
$$|r(1)| = 1$$
.

Now, each irreducible T-module in M_T or N_T contributes a factor of the form $(1-t^x)$ to r(t), where $t^x=t_1^{x(1)}\cdots t_n^{x(n)}$ describes the action of $t\in T$, with the $x^{(i)}$ integers not all zero. These factors are partitioned into classes in the jth of which all x's are multiples of a common n-vector x_j . Then the factors in that class are expressed as products of cyclotomic polynomials in the indeterminate t^{xj} . Considerations of reducibility and the fact that r(t) $\in R(T)$ require that all such cyclotomic polynomials in the denominator of r(t) also appear in the numerator. After cancellation of such factors, what remains is a product of cyclotomic polynomials,

$$r(t) = \prod_{j} \prod_{k} \phi_{m_{j,k}}(t^{x_j}).$$

The fact that deg $\omega=1$ requires that each $m_{j,k}$ not be a power of a prime. Then each $\phi_{m_{j,k}}$ can be written as a ratio of factors of the form $(1-(t^{x_j})^d)$ with an equal number of factors in the numerator and denominator. Here the d's are positive integers determined by $m_{j,k}$. If we write T-modules

$$M_{j,k} = \sum_{d \text{ (numerator)}} (t^{x_j})^d$$
 and $N_{j,k} = \sum_{d \text{ (denominator)}} (t^{x_j})^d$,

it is true that

$$M_{j,k} - N_{j,k} = \prod_{h} (\psi^{p_h} - 1)(t^{x_j})^{p},$$

where $m_{j,k} = p \; \Pi_h \; p_h$ with the p_h all the distinct prime factors. Then $\sum_{j,k} (M_{j,k} - N_{j,k})$ is of the form given in the Theorem, and it is also equal to M = N

For sufficiency, we observe that M-N is expressed as the sum of terms of the form $P\chi$ each of which can be thought of as some $M_{P,\chi}-N_{P,\chi}$. We construct $\omega_{P,\chi}\colon N_{P,\chi}\to M_{P,\chi}$ with the required properties, and take the direct sum of the maps, which is $\omega\colon N+Q\to M+Q$. For this construction, beginning with Petrie's two-dimensional example for S^1 , which corresponds to u=2 in $P=(p_1,\cdots,p_u)$, we devise a 2^{u-1} -dimensional quasi-equivalence and prove by induction on u that it has the required properties [1]. The same map is good when $\chi\in\hat{T}$ too. The maps turn out to be polynomials in the complex variables and their conjugates, with normalizing adjustments and smoothing factors. Also, the above outline of a proof has assumed that in the

irreducible T-modules t^x each x is a positive multiple of its x_i . The case where some are negative multiples can be treated by modifying the maps slightly.

The Theorem gives conditions for stable quasi-equivalences, but actual quasi-equivalences exist under virtually the same conditions [2].

REFERENCES

- 1. A. A. Meyerhoff, Proper equivariant maps of complex representation spaces of torus groups, Thesis, Rutgers University, May, 1974.
 - 2. A. A. Meyerhoff and T. Petrie, Quasi-equivalence of G-modules (to appear).
- 3. T. Petrie, Equivariant quasi-equivalence, transversality and normal cobordism, Proc. Internat. Congress Math., Vancouver, 1974 (to appear).
- —, Obstructions to transversality for compact Lie groups, Bull. Amer. Math. Soc. 80 (1974), 1133-1136.
- 5. —, A setting for smooth S¹-actions with applications to real algebraic actions on $P(C^{4n})$, Topology (to appear).

 6. —, Smooth S¹ actions on homotopy complex projective spaces and related
- topics, Bull. Amer. Math. Soc. 78 (1972), 105-153.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNS-WICK, NEW JERSEY 08903