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An experimental worker measures n x n independent magnitudes a^ 
(i, ƒ = 1, • • • , n) and computes the determinant of the corresponding matrix 
before discarding the a^s. One can imagine a set-up where he only gets to 
know the determinant but not the at- themselves. By repeating the same ex­
periment over and over and averaging the corresponding determinants he 
obtains the determinant of the unknown mean values mtj. of the magnitudes 

The purpose of this note is to indicate that under reasonable assumptions 
he can get much more information about the unknown matrix m^ at no extra 
cost. 

Assume that the entries a(j- (/, ƒ = 1, • • • , n) are jointly Gaussian vari­
ables with unknown means mtj- and known correlation matrix R. 

For the remainder of this note we concentrate on the special case where 
the entries are independent and have the same variance, i.e. R = pi (p =£ 0); 
this case already well illustrates our point. The results given here illustrate 
the fact that in many nonlinear identification problems the presence of noise 
can prove helpful (see [1]). We give first a complete analysis of the 2 x 2 
case. 

For the discussion below put 

"»-(::;; s:;:) 
with a, b, c, d unknown constants, and xv x2, x3, x 4 Gaussian (0, 1) random 
variables. The case (0, p) (p ^ 0), is just the same. 

Bring in the characteristic function of the determinant F(k) = EelXdetM 

and conclude after some elementary computation that 

F(\) = éXM(0)*(a + d, -\)V(d - ay \)*(b + c, -\)*(b - c, X). 

Here 
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/.<*> 2 /It *-%(l-i'X) 1\2OL2 

*«,, X) - ƒ_. e-»(.-«V-< J , - ' „_ft), 
so that one finally gets 

g »\detM(0) x 2 ( f l2 + ft2 + g 2 + j 2 ) + m { a d _ feg) 

* w ~~ (i - fx)2 x * (i - ixxi + ft) 
In conclusion, we see that the knowledge of the distribution function of 
det M(x) is equivalent to that of det Af(0) = ad - be, and tr MM* = a2 + 
b2 + c2 + d2. Moreover it is plain that this information is already contained 
in the first two moments of det M(x). This is summed up in 

THEOREM I. From the distribution function of det M(x) one obtains 
exactly det M(0) and tr M(0)M*(0). 

COROLLARY. If the matrix of mean values Q £) is symmetric, then 
from the distribution of det M(x) one can deduce both eigenvalues ofM(0) up 
to a common change in sign. 

REMARK. If a12 and a2l had zero variances, and only ax v a22 were 
subject to a random error of the same nonzero variance, our proof shows that 
alx and a22 could be determined up to order and a common change in sign. 
Moreover det M(0) is known, and thus we also have the product a12a21. 

Notice that we have found the determinant and the trace of M(0)M*(0), 
besides det M(0). It is in this form that the results above extend most natur­
ally to higher dimensions. We have 

THEOREM H. The distribution function of det M(x) determines exactly 
the eigenvalues of M(0)M*(0)-alias the singular values ofM(0)—and det Af(0). 

The proofs are not so simple as for n = 2. There is no closed form for 
the characteristic function of det M(x) and one has to compute moments and 
then solve the resulting system of equations. Some indications of how this is 
done will be given below. 

If each entry has (known) variance p one shows that 

E det M(x) = det M(0) = det M, 

£(det M(x))2 = (det M)2 + pX(Mij)2 + 2p2X(Mifkl)2 + • • • 4- n\pn. 

On the last line the first sum runs over the square of all the (n - 1) x (n - 1) 
minors of M, the second one over all the in - 2) x (n - 2) minors (squared) 
of M, and so on. This formula is all that is needed if the variance p is variable; 
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see below. The expressions for the higher moments involve these same quan­
tities. The task is then to solve the appropriate system of equations. For 
instance in the case of n = 3 we have 

E det M(x) = det M, 

E(det M(x))2 = (det M)2 + pX(Mij)2 + 2p22M? + 6p3, 

E(det M(x)f = (det M)3 + 3p(det M)X(Mij)2
9 

+ 12p2(det M)XM?f + 60p3 detM. 

Thus-at least if det M ^ 0-we can solve for X(MiJ)2 and 2M?. as long 
as p =£ 0. The case of det M = 0 requires the computation of the fourth 
moment. 

In general one ends up with the determinant of M, and the sum of 
squares of all its (n - k) x (n - k) minors for each k = 1, • • • , n - 1. It is 
now a simple exercise using the Cauchy-Binet formula to see that these quan­
tities give exactly the eigenvalues of A£M*. 

A complete proof of Theorem II, as well as a discussion for the case of 
a general correlation matrix R, will appear elsewhere. 
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