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We state an analogue of Tits’ theorem on linear groups [3] as

CoNJECTURE. Let G be a finitely generated (f.g.) solvable group. Then,
any f.g. subgroup of the automorphism group of G is solvable by finite or con-
tains a noncyclic free group.

As preliminary evidence, it was noticed by G. Baumslag and the authors
that the Conjecture is correct when G is nilpotent-by-abelian.

ZG denotes the integral group ring of a group G and Q(D) the division
ring of quotients of an Ore domain D. If ZG is an Ore domain and U a group
of matrices over Q(ZG), we say U has a (right) common denominator if there is
b € ZG such that each entry in a matrix of U has the form ab™!, a € ZG.

Henceforth these notations hold. F a free group whose rank will be speci-
fied, R # {1} a normal subgroup of F, v,(R) the nth term of the lower central
series of R, R' = v,(R), H = F|R, G = F|R’, A(G) the automorphism group
of a group G, A(G,; G,) the kernel of A(G,) — A(G,).

Theorem 1 is joint work with E. Formanek.

THEOREM 1. Let F have rank two and assume Z(F[R) is a domain with
R < F'. Then A(F/R'; F/F") consists entirely of inner automorphisms.

COROLLARY. Let F/R be as in Theorem 1 and also assume F|R is soly-
able. Then F[v,(R) satisfies the Conjecture.

Problem 1. Let F have rank two and H = F/R be a solvable group such
that ZH is an Ore domain, and let U be a group of units of Q(ZH) which has
a common denominator. Is U a solvable group?

An affirmative answer to Problem 1 would yield a proof of the Corollary
independent of Theorem 1. It seems reasonable to suspect that a group U of
units in Q(ZH), ZH an Ore domain, having a common denominator is in fact
a conjugate of a group of units of ZH.
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THEOREM 2. Let H be a poly-(infinite cyclic) group, and let U be a f.g.
subgroup of SL,(Q(ZH)) which has a common denominator. Then, U contains
a noncyclic free subgroup, or U is a finite extension of a radical group.

A radical group has an ascending series terminating in the group such
that each factor group of the series is locally nilpotent. As a corollary of
Theorem 2, we have

THEOREM 3. Let F have rank three and H = F|R be poly-(infinite cyclic).
Let A be a f.g. subgroup of A(G; H). () If A satisfies the maximum condi-
tion on abelian subgroups, then A contains a noncyclic free subgroup or A
is polycyclic by finite. (i) If A satisfies the minimum condition on abelian
subgroups, then A is a Cernikov group (i.e., abelian by finite satisfying the
minimum condition on subgroups). (iii) If each normal subgroup of A is
f.&., then A contains a noncyclic free subgroup or A is polycyclic by finite.
Moreover, (i)—(iii) are true if A is a f.g. subgroup of A(F[v,(R)).

Problem 2. Can one improve Theorem 3 to conclude that A contains a
noncyclic free group or is solvable-by-finite without restrictions on A?

A positive answer to Problem 2 would follow if one could show that a
locally solvable subgroup of SL,(Q(ZH)) is solvable; e.g., by showing that
there is a bound on the derived length of a solvable subgroup of SL,(Q(ZH)).
There is one nice case in which we can answer Problem 2.

THEOREM 4. Let F have rank three and let F/R be torsion-free nil-
potent of class two. Then, F|v,(R) satisfies the Conjecture.

Problem 3. Let G be a solvable group such that ZG is an Ore domain.
If Uis a f.g. subgroup of SL,(Q(ZG)) which has a common denominator,
what conclusion can one draw concerning U?

THEOREM 5. Let F have rank n, and H = F/R be free metabelian. Then,
any f.g. subgroup of SL,(ZH) is solvable-by-finite or contains a noncyclic
free subgroup.

Our concluding result adds to the evidence for the Conjecture by in-
dicating the prevalence of free subgroups.

THEOREM 6. Let F have rank three and {{ = F/R be any group for
which Z(H) has no nonzero zero divisiors. Let A; (1 <i < 3) be the (abelian)
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subgroup of A(G; H) whose nonidentity elements leave all but the ith gen-
erator fixed. Then, the subgroup of A(G; H) generated by the A, is the free
product of the A,.

The restriction on the rank of F is not essential. A similar more comp-
licated result holds for F of rank > 3.

The pioneering work of Magnus described the relevant automorphism
groups as automorphisms of free modules in an explicit way. The work an-
nounced here is a start in exploiting Magnus’ representations in noncommu-
tative contexts. In our proofs we relied on the structure of a skew-polynomial
domain K [x], K a division ring, and its division ring of quotients Q(K[x])
with the induced discrete valuation. The decomposition of SL,(Q(K[x])) and
SL,(K[x]) as amalgamated free products of groups due to Ihara and Nagao,
respectively [2], were employed, and also the subgroup theorems for amal-
gamated products of Karrass and Solitar [1].

We conclude with a more specific conjecture which has a deeper relation-
ship with Tits’ theorem. Henceforth a linear group will mean a group of
matrices over a commutative Noetherian ring. We call a group poly-L if the
group has a finite subnormal series such that the factors are either linear or
abelian groups. Our suggestion is that

“The group of automorphisms of a f.g. solvable group is poly-L.”

F.g. nilpotent-by-abelian groups have automorphism groups which are
poly-L (this includes all polycyclic groups). Theorem 1 tells us that the auto-
morphism groups of a large class of 2-generator nilpotent-by-torsion-free solv-
able groups are poly-|.
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