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Let G be a semisimple Lie group with Iwasawa decomposition G = KAN. 
In this note we give a precise condition for the existence of square-integrable 
representations of the nilpotent subgroup N. In that case we write down a 
Plancherel formula for the solvable subgroup AN. Full details and complete 
proofs will appear in a later paper. 

These results are in essence part of the author's doctoral dissertation 
[1]. He would like to thank Professor Joseph A. Wolf for his patient advice 
and encouragement. 

I. L2 -representations of the nilpotent subgroup N. Let N be a uni-
modular locally compact group. Let 7r be an irreducible unitary representa­
tion of N on a Hubert space H(TT). Then n is square-integrable (or L2) 
if there are nonzero vectors xx and x2 in H(ir) such that 

fN/z \(n(s)xv x2)\
2 dv(s) < <*> 

where Z is the center of N and dji(s) denotes integration over N/Z with 
respect to a Haar measure JJL on N/Z. 

UN is a connected simply connected nilpotent Lie group with Lie 
algebra n, let Z and .J be the respective centers on N and n. Let n*, 
j * be the respective linear duals of n, j . Define an alternating bilinear form 
bf on n by bfic, y) = f([x, y\) for / G n * and [ , ] the multiplication 
for n. If ƒ G j , we can extend ƒ trivially to n and define bf on n/ j . 
Moore and Wolf [3] have shown the following: 

PROPOSITION 1. N has L^representations if and only if there exists 
an f G j * such that bf is nondegenerate on n/j. 
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Then a straightforward argument (see [l]) gives the following condition. 

THEOREM 1. If there is a noncentral x in n such that [x, n] H j = 
{0}, then N has no L ̂ representations. 

We note that Zy is a skew-symmetric bilinear form on n/$ and hence 
we can define the Pfaffian Pf(ƒ) to be the Pfaffian of Zy. Proposition 1 
can be restated. 

PROPOSITION 1'. N has L2-representations if and only if there exists 
an f G J* such that Pf(/) * 0. 

Let g be a real semisimple Lie algebra with Iwasawa decomposition 
g = f + a + n. Let 3W be the centralizer of a in f. For a: a —• R, 
a =£ 0 a real linear functional on a, let 

fla = {x G fl| [a, x] = ot(a)x, for all a G û}. 

If 8a =£ {0}, fla is the a-root space of fl for a, and a is an a-root of g. 
Define fl° =2W + a. 

THEOREM 2. Let a be an a-root Then fl° acts irreducibily over R 
on fla by the adjoint action. 

THEOREM 3. Let j3, y, and fi + y be nonzero a-roots with j3 and y 
linearly independent Then [fl̂ , fl7] = fl^+7. 

There is a positive a-root system X J such that n = 2{fl7| y G S J }. 
Let j be the center of n. 

THEOREM 4. Let ix be the maximal a-root Then flM = j . 

This enables us to find a condition for the existence of L2 -representations 
of N. 

THEOREM 5. Let G be a simple Lie group with Iwasawa decomposi­
tion G = KAN and corresponding Lie algebra decomposition fl = f + û + n. 
Then N has square-integrable representations if and only if the extended 
Dynkin diagram of the reduced a -root system is of type Ax or of type A2. 

Theorems 1 through 4 can be used to show that the condition on the 
root system is necessary for the existence of L2-representations. Sufficiency 
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can be shown by explicitly calculating the Pfaffian in these cases. Details of 
these calculations will appear later. 

II. The Plancheiel formula in the rank 1 case. Here G is a simple lie 
group with Iwasawa decomposition G = KAN and G/K has symmetric space 
rank 1. Let fl = f + a + n be the corresponding Lie algebra decomposition. 
Let F = R, C, Q, or (Jay be one of the real division algebras; here Q is the 
quaternions and Cay the real Cayley division algebra. Let lm (F) be the 
imaginary part of F, that is, the orthogonal complement to R in the usual 
orthonormal basis. Then g can be realized as so(l9k; F), for F = R, C, or 
Q, or as the real form of the exceptional Lie algebra of type F4 with maximal 
compact subalgebra so(9), that is, with Cartan index-20. Then n can be 
realized as n„(F) = Fn + Im(F) where nw(F) is the nilpotent part of 
so(l, n + 1; F), or, if n = 1 and F = Cay, of ^4(_2o)- ^ e multiplication 
for nw(F) is given by making Im(F) the center of nw(F) and, for x = 
(*! , • • • ,*„) and y = (yx, • • • ,y n) in Fw, defining 

[x, y] = Imf X Wi) fa Im(F). 

Then, in particular, [n„(F), n„(F)] C Im(F) = j(n). 
Using an idea due to C. C. Moore [2], we are able to find a "Plancherel 

Theorem" for AN (or, more accurately, for NA) in this case. 

THEOREM 6. Let n = nw(F) for F = R, C, Q, or Cay be given as 
above. Let û = R be the (vector) abelian Lie algebra. Let N, A be the 
connected Lie groups of n, a respectively, and NA their semidirect product 
and hence the Lie algebra of n + a. Let dim j(n) = k. Then, for 
y E C~(M4), 

-YVNA ) = L - i t r a c e *x0>7) do(K) 

where do(X) is Lebesgue measure on the unit sphere in j (n)*, nx is in the 
unitary dual of NA parametrized by \ and D is an operator on C£(Rk) 
given by 

D=(/ /2TTXA) 1 / 2 for F = R, 

D = (i/2ir)q(A)q/2 for F = C, Q, or Cay, 

where q = (n(k + 1) + 2k)/2 and A is the Laplacian operator on C~(Rk) 
and Rk is the center of N. 
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