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An elliptic curve over a field K may be defined to be a nonsingular 
projective plane cubic curve in standard form, which for characteristic 
7*2, 3 is 

(1) E:y2 = 4x* - g2x - gz, 

where g2, g3 e K; that E is nonsingular means that the discriminant 
A =gl—27gl is not 0. (A slightly modified cubic equation is required in 
characteristic 2 or 3.) E has a natural group law, written additively, with 
the unique point at infinity, 0=(oo, oo), as zero, defined by the rule that 
three points on E add up to 0 if and only if they are collinear. E is then 
an abelian variety of dimension 1 defined over K. Let E(K) denote the group 
of points of E with coordinates in K. 

Over K=C9 the field of complex numbers, if we are given a complex 
torus CjL, where L=ZœxÇdZ(jc>2 is a lattice, then we have an analytic 
isomorphism 

ClL^E:y* = 4x*-g2x-g3, 
U u^(x,y) = W(ü)9y(u)) 

defined by the Weierstrass ^3-function. Here g2 andg3 depend on the lattice 
L. The isomorphism carries the natural group law on C\L onto the above 
geometrically defined group law on E, by the addition theorem for the 
SP-function. Viewing E as CjL, it is clear that the group of iV-division 
points, EN={PeE:N• P=0}, is isomorphic to CNxCN, where CN is 
the cyclic group of order N. 

If K=Q is the field of rational numbers, then, by a celebrated theorem 
of Mordell, the group E(Q) is finitely generated: 

(3) E(Q) = Z'xF, 

where F=E(QY, the torsion subgroup of E(Q), is finite. In practice, for 
a given elliptic curve E, one can determine the torsion subgroup F rather 
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easily, and the rank r, with somewhat more difficulty, by some kind of 
descent argument. On the present occasion, we are concerned with the 
modular version of the first problem, i.e. 

Problem I. As E varies over all elliptic curves defined over Q, what 
torsion subgroups F=E(QY occur? 

For trivial reasons, F is either cyclic or the product of a cyclic group 
with a group of order 2. (E(R) has at most two components since E is 
cubic.) Hence, Problem 1 is not much different from the problem of 
finding what cyclic groups F can contain, i.e. determining for what positive 
integers N there exists an elliptic curve E defined over Q containing a 
rational point of order N. 

CONJECTURE 1. Some elliptic curve over Q has a rational point of order 
Nfor the eleven values .#=1-10, 12 and for no other values ofN. 

As explained below, these are the values of N for which the relevant 
modular curve is of genus 0. At the moment, Conjecture 1 has been 
verified (at least) for all N<151, and for all N<250 with at most four 
exceptions. If Conjecture 1 is true, then from known results it is easy to 
see that there are exactly fifteen possible isomorphy types for F: the eleven 
cyclic groups mentioned, and the product of a group of order 2 with a 
cyclic group of order 2, 4, 6, or 8. Conjecture 1 is a precise version, for 
K=Q, of the "folklore conjecture" mentioned by Cassels [1] to the effect 
that E(Ky is bounded for any fixed number-field K; Manin has proved 
that at least the/?-torsion is bounded, for any prime/?. 

A related problem, which has received more attention, although it is 
in some respects more difficult, and which is the principal subject of this 
report, is the following. Let F be a finite subgroup of E, an elliptic_curve 
defined over Q. F is a rational group if s(F)=F for all s e Gal(g/g); 
of course F is rational if F c E(Q), but the converse is not necessarily true. 
F is a rational group if and only if F is the kernel of a rational isogeny, 
i.e. the kernel of a homomorphism E-+E', defined over g, of elliptic 
curves defined over Q. In this case we can assume that F is cyclic with no 
essential loss of generality, and we ask: 

Problem 2. For which values of N does there exist a cyclic rational 
isogeny of elliptic curves, of degree NI 

Such rational isogenics are known for twenty-six values of N, namely 
JV = 1-19, 21, 25, 27, 37, 43, 67, 163; in each of these cases there is an 
explanation for the existence of the isogenics, as will be shown below. This 
may very well be a complete list; at any rate I am now inclined to believe 
that there will be only a finite number of such values. At the moment it 
seems to be possible, with a little bit of luck, to settle the question for any 
particular value of N9 often with surprising ease; the crucial tool is the new 
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descent theory of Barry Mazur [6]. Once Problem 2 is settled for a given 
value of N, it is an easy matter to determine whether the rational group in 
question contains a rational point or not, so, in practice, Problem 2 takes 
care of Problem 1. 

1. Modular interpretation. In the classical case (i.e. over C) an elliptic 
curve is of the form E=C\L9 where L=Zco1(BZco2 is a lattice with period 
ratio T=œjcoz in the upper half-plane §. E is isomorphic to E'=C/L' 
if and only if the lattices are proportional, i.e. L'=tL9 where teC9 

i.e. r and r' are equivalent under the modular group T=SL(2, Z)/(±l), 
i.e. r=(ar+b)l(cT+d) for some (a

c J) e SL(2, Z). Thus the space of 
(isomorphism classes of) elliptic curves over C is parametrized by Y= 
r \ § . Let X denote the compactification of Y by adding the point at 
infinity (the cusp); Zis of genus 0. Finally, the (elliptic modular) invariant 

(4) j=j(E)=j(r)=(l2giflA 

(A=gl—27gl) defines an isomorphism of Y onto C. j also defines a 
structure of an algebraic curve defined over Q on Y9 and an elliptic curve 
E is isomorphic to one defined over a field K (i.e. with g2, g3 e K) if and 
only if j(E) G K. 

Our interest here is not in elliptic curves alone, but in elliptic curves 
together with a level N structure, i.e. some data concerning the points of 
order N. There are many kinds of level N structures, but we shall discuss 
here only the two which are relevant to Problems 1 and 2 above. Let us 
consider pairs (E9 Q)9 resp. (E9 C), where E is an elliptic curve and Q is 
a point of order N on E9 resp. C is a cyclic subgroup of E of order N. 
The given pairs are isomorphic to (E\ Q')9 resp. (E', C') if there exists an 
isomorphism </> of E onto E' with <f>(Q)=Qf

9 resp. <f>(C)=C'. In analytic 
terms, we can choose the basis (col5 co2) of the lattice so that Q=co2lN9 

resp. C is the group generated by coJN. In the first case, (E, Q) is isomor­
phic to (£", Q') if and only if T is equivalent to T' under the subgroup 
T^N) of T defined by matrices (a

c %) with c=0 and a=d=\ (mod JV); 
the space of (isomorphism classes of) pairs (E, Q) is thus parametrized 
by y1(iV)=ri(7V)\§. Similarly, the space of (isomorphism classes of) 
pairs (E, C) is parametrized by Y0(N)=T0(N)\$}, where V0(N) is the 
subgroup of T defined by matrices (£ I) with c=0 (modiV). Let X±(N)9 

resp. X0(N)9 denote the compactifications of YX(N)9 resp. Y0(N)9 by 
adding cusps (rational boundary points, or oo). The Z's and 7's are 
algebraic curves defined over Q; cf. Shimura [12] for the rational structure 
and [10] for a description of the cusps, and their fields of rationality. 
For example, if N is prime then X0(N) has two cusps, 0 and oo, both 
rational over Q. 
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(REMARK. The function field of X0(N) is C(j,jN), where JN{T)=J{NT). 

It is classical that y andy^ satisfy an equation with rational coefficients; 
this gives a plane curve over Q whose desingularization is X0(N).) 

Finally, for any prime/? not dividing N, XX{N) or X0{N) has a good re­
duction modulo /?, by Igusa [4], and so we can speak of points on XX{N) 
or X0(N) rational over any field K whose characteristic does not divide 
N; the set of such points is denoted by XX(N)(K) or X0{N){K). The 
description of the cusps [10] is the same in characteristic p as in charac­
teristic 0. 

THEOREM 1. Any point of YX{N) or Y0{N), rational over afield K {of 
characteristic not dividing JV), is represented by a K-rational pair {i.e. E 
is defined over K, and Q is rational over K, or C is a group rational over K), 
and conversely. 

This was proved by Serre in 1971, for characteristic 7*2, 3, and for 
characteristic j*0 (essentially a question of finite fields) by Milne and me 
(independently) about a year later. The theorem holds for any type of 
level N structure, by the same proof—cf. [2, pp. 132-133]. In view of 
Theorem 1, we can restate our problems as : 

Problem 1'. For which N is YX{N){Q) nonempty? 
Problem 2'. For which N is Y0{N){Q) nonempty? 
If the genus of YX{N) or Y0{N) is 0, then the set of rational points is in 

one-one correspondence with g , so we have an infinite number of rational 
points, in fact a linear family. The genus of YX{N) is 0 exactly for N= 1-10, 
12, and Conjecture 1 arose (in not very convincing fashion) from the 
observation that these were just the N for which rational pairs {E, Q) 
were known [1], [9]. The conclusion toward which we are tending seems 
to be that modular curves only have rational points for which there is a 
reason. (It may be well to emphasize at this point that the work dealt 
with in this report is definitely special to the field Q. We are not working 
over Q, rather than a general number-field, just for reasons of simplicity.) 
As to Problem 2, Y0{N){Q) is infinite if the genus g is 0, i.e. if JV= 1—10, 
12, 13, 16, 18, 25, and is finite and known if g = l (cf. [10, p. 229]), so 
we may as well assume g^.2 hereafter. 

In order to clarify the meaning of Theorem 1, we must discuss the fol­
lowing mildly technical point. The automorphism group A=Aut{E) 
of an elliptic curve is finite, and A = ( ± 1) if/T*0,1728. If the characteristic 
is 5^2, 3, then A=/LI6, resp. //4, i f /=0 , resp. 1728, where jj,m is the group of 
mth roots of 1 ; in characteristic 2, resp. 3, A is a noncommutative group 
of order 24, resp. 12, if y=0. We also have the automorphism groups of 
pairs: A{Q)=Aut{E, £ ) , resp. A{C)=Aut{E, C), is the group of all 
<f> G A with <f>Q=Q, resp. <f>C=C. 
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PROPOSITION 1. For N^.4, A(Q) is trivial, while A(C) is cyclic of order 
2, 4, or 6. 

This is an easy exercise once you know the basic facts about the endo-
morphism ring of an elliptic curve [1, pp. 215-220]. In modern language 
[2], the triviality of A(Q) means that Y±(N) is a "fine moduli scheme" 
for N^4; the pair (E, Q) representing a point of YX(N) is unique up to a 
unique isomorphism. On the other hand, Y0(N) is never fine. One con­
sequence of this is that the ^-rational pair (is, C) representing a point of 
Y0(N)(K)9 whose existence is asserted by Theorem 1, is never unique. 
However, we do get any other such ^-rational pair (E', C') by "twisting" 
(E, C); the set of (X-isomorphism classes of) all such (£", C') is paramet­
rized by a Galois cohomology group HX(K, A(C)). At any rate, a statement 
such as " Y0(N) parametrizes cyclic isogenics of degree N" requires careful 
interpretation. 

2. Rational points on the Jacobian. We first make some general 
remarks about finding rational points on curves. Let J b e a (projective, 
nonsingular) curve defined over a number-field Ky of genus g ^ 2 . Let / 
be its Jacobian : / is the group of divisor classes of degree 0 on X, and can 
be given the structure of a projective variety of dimension g, defined over 
K, so that the group law is defined by ^-rational functions, i.e. / is an 
abelian variety defined over K. (A divisor on X is a formal finite sum 
D= 2 P nP • (P), where P e X and nP e Z; its degree is deg(Z>)= 2 p nP. 
Two divisors Z>, E are equivalent if D—E=(f)=^P otdP(f) - (P) is 
the divisor of some function ƒ on X; then deg(Z>)=deg(is). / is the set of 
equivalence classes of degree 0. We can embed X in / by assigning to 
P e X the class of (P)-~ (P0), where P0 is any fixed point of X; the em­
bedding is defined over K if P0 is rational over K.) By Weil's generalization 
of Mordell's theorem (3), the group of AT-rational points o f / is finitely 
generated : 

(5) J(K) = Zr x F, 

where F is finite. The general diophantine program is to determine J(K)9 

or at least get some quantitative information about it, and then to find 
the intersection X{K)=XC\J{K). Since X is a 1-dimensional subvariety 
of/, which has dimension g ̂ 2 , it is reasonable to hope that X(K) will 
be finite (MordelVs conjecture). Taking now K=Q, for simplicity, we 
make two remarks of a practical nature: 

(i) It is easier to control the torsion subgroup F than the rank r. For 
one thing, if p is a prime at which / has a good reduction / , then re­
duction modulo/? is injective on F, up to/7-torsion. Thus, if we know some 
subgroup F' of F, we can often conclude that F'=Fby calculating / for 
a few primes /?. 
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(ii) Determining the rank r is a question of descent; the larger F is, 
the easier the descent will be, and the greater the likelihood that r is small. 

Now take K=Q, X=X0(N), J=J0(N), the Jacobian of X0(N); for 
simplicity, let us also suppose that N is a prime > 3 . The genus is then 

(6) g=(N-v)/129 

where N=v (mod 12), and v=13, 5, 7, — 1 . X0(N) has two cusps, 0 and 
oo, both rational, and the divisor class of (O)-(oo) defines a point of 

JQ(N)(Q) of finite order n, where 

(7) n = num((N - 1)/12) 

is the numerator of (N-l)/12 (cf. [10]); for example «=23 if JV=47. 
That n is reasonably large is to be considered helpful, as remarked above. 
A certain amount of numerical experimentation led to : 

CONJECTURE 2. The cyclic group of order n generated by the class of 
(0)-(oo) is the full torsion subgroup ofJ0(N)(Q). 

Conjecture 2 has been verified for all N<250 (except iV=227), by re­
duction modulo suitable primes p (not dividing n- N), using the excellent 
tables of Hecke operators compiled by Wada. (Cf. [13], or rather the 
computer print-out it reports on; Wada's machine apparently broke 
down at N=227.) More recently, Conjecture 2 has been proved up to 
2-torsion by Mazur [6] ; quite possibly he will have settled the problem of 
the 2-torsion as well by the time that this article has appeared. 

(REMARK. Since isogenous abelian varieties over finite fields have the 
same number of rational points, it is an experimental fact that the torsion 
subgroup of J0(N){Q) is maximal among the abelian varieties g-isogenous 
to JQ(N).) 

Equally important is another kind of torsion on J0(N). By Kummer 
theory, Shimura discovered another cyclic subgroup of J0(N) °f order 
given by (7) which is a rational group, and on which Galois groups have 
the same effect as on the group ju,n of nth roots of 1 (cf. [10, p. 230]). 
We call this group the Shimura group, and say that its elements are JLC-
rational. 

CONJECTURE 2 (TWISTED). The Shimura group is the maximal finite 
^-rational subgroup ofJ0(N). 

For an abelian variety over a finite field Fa9 it is easy to check that we 
have the same number of rational and ^-rational points of order prime 
to the characteristic. (One is given by the kernel of ir— 1, the other by 
the kernel of TT—q, where IT is the Frobenius endomorphism.) Hence the 
same calculations that verified Conjecture 2 for N<250, Nj£221, also 
verify Conjecture 2 (twisted) for those values of N. 
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The final basic fact about X0(N) is that it possesses an involution 
w=wN. In terms of matrices, w is defined by (^ "J1), which normalizes 
T0(N); in terms of pairs, w sends (E, C) to (EjC, EN\C). w is a rational 
involution of X0(N), so the quotient Xo(N) is again defined over Q. 
The number v(N) of fixed points of w is given by Fricke's formula: 

v(N) = h(-N) + h(-4N) (if N = 3 (mod 4)), 
( ' = h(-4N) (otherwise), 

where /*(—</) is the class-number (of quadratic forms of discriminant — d); 
the genus of X+(N) is 

(9) g+ = (g + l)/2 - * ( W 

w also defines an involution w ofJ0(N)9 which we then break up into +1 
and —1 eigenspaces, so to speak: J$(N), resp. J^(N), is the connected 
component of the kernel of (u>— 1), resp. (w+1), on/0(iV); the dimension 
is g+, resp. g~=g-g+-

It is clear that w acts as — 1 on the rational group of order n on (0)—(oo), 
since w interchanges 0 and oo; it is true that w= — 1 on the Shimura 
group as well. Thus our known torsion lies in the minus part of J0(N). 
It is not true that JQ(N)(Q) is always finite; however, Mazur's descent 
theory [6] has allowed him to prove that Jö(N) has a nontrivial factor, 
which he calls the chosen factor, which has only finitely many rational 
points. (At least this is so if n is divisible by a prime/?^5; if not, a con­
dition of "regularity of the Eisenstein ideal" must be verified. I leave the 
description of Mazur's result rather vague, since it is undergoing constant 
improvement; anyway, we will not have to wait too long before the full 
account [6] is available.) This implies the Mordell conjecture (finiteness 
of X0(N)(Q)) for most—probably all—of the curves X0(N). 

It remains to make this result quantitative, i.e. to find X0(N)(Q) exactly 
(Problem 2). Three approaches, in the order in which they come to mind, 
are: 

(i) Exploit the geometry of X0(N), e.g. the Riemann-Roch theorem, 
knowledge of Weierstrass points, etc. 

(ii) Obtain numerical information by reducing modulo convenient 
good primes p (i.e. p^N). 

(iii) Reduce modulo the bad prime N (Deligne-Rapoport-Mazur). 
A fair amount of ingenuity was expended on (i) before I realized that 

(ii) is usually easier; (ii) will be discussed, largely by example, in the next 
section, (iii) is the most powerful of all; it uses ideas which are much more 
sophisticated than those discussed so far in this article. 
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3. Finite fields* Let K=Fq be the finite field of q elements, and E 
an elliptic curve defined over K; let TT.E-^E be the Frobenius endomor­
phism, i.e. 7T(X, y)=(xQ,yq). By the theory of the endomorphism ring 
[1], 7T (or any other endomorphism) has a transpose TT:E-+E, such that 
77+77 G Z , and 7T •7r=deg(7r)=^. Let — ̂ =(77—7?)2; then d is an integer, 
< / = 0 . 

Let N be a positive integer relatively prime to q, and let C be a cyclic 
subgroup of is of order JV. Clearly C is ^-ra t ional if and only if 7rC=C, 
i.e. IT—a vanishes on C for some integer a. F rom this we conclude easily 
that: 

PROPOSITION 2. (i) If ire Z, then all C's are K-rational. 
(ii) Ifn^Z, and N is relatively prime to 2d, then there are 

n(-K)) 
subgroups C of E, cyclic of order N and rational over K; here q runs over 
the prime factors ofN, and 

is the Legendre symbol. 

Of course there are cases not covered by the proposition, but we will 
not state the general result here. The point is that it is easy to count the 
A>rational subgroups C of a given E; the more subtle question is to deter­
mine just how many points of Y0(N)(K) are thus represented (cf. remarks 
at the end of §1). In this direction we have the 

LEMMA. Let (E, C) and (E\ C') be isomorphic pairs, where E and E' are 
defined over K, and A(C)=Aut(E, C)=A=Aut(E). Then C is K-rational 
if and only if C' is. 

PROOF. Let \p be an isomorphism of E onto E' with y>C=C'. The con­
jugate y)n is also an isomorphism of E onto E', and <f>=y)~1 o y? eA=A(C). 
Now yf o 77=77' o y, where n' is the Frobenius endomorphism of E', 
i.e. \p o <j> o 77=77' o y). If 77C=C, then 

77'C' = Tr'xpC = ip<f>7rC = tp<f>C = y)C = C ' . 

In particular, the Lemma applies if j =^0, 1728, when A=±l, and we 
get 

THEOREM2. LetjeK=Fq,j^0,1728. Choose any E defined over K with 
j(E)=j. Then the number of points of Y0(N)(K) over j is the same as the 
number of subgroups C of E which are K-rational and cyclic of order N. 
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The following theorem gives a sample of what happens when there are 
additional automorphisms. Recall that in characteristic 2, resp. 3, the 
elliptic curve with y = 0 has 24, resp. 12, automorphisms; however A(C) 
is cyclic of order m=2, 4, or 6, if JV_4, by Proposition 1. 

THEOREM 3. Let N be a prime > 3 . Then the points of Y0(N) overj=09 

in characteristic 2 and 3, are as follows: 
(A) In characteristic 2, we have 6 • r (4)+4 • v(6)+12 • v(2)=N+l, 

where v(m) is the number of points of Y0(N) overj=0 represented by pairs 
(E9 C) with Aut(£, C) of order m. 

(i) TfiVEs-l (mod4), then r(4)=0. If N=\ (mod4), then v(4)=l ; 
the point is F2-rational and fixed by the involution w. 

(ii) IfN=-\ (mod 6), then v(6)=0. If N=\ (mod 6), then r (6)=2; 
the two points are rational over JF4, conjugate over F2, and interchanged by w. 

(iii) The point's with m=2 are all rational over JF4. The number of them 
which are Irrational is 1 if 

and otherwise 0. 
(B) In characteristic3, 3 • v(4)+2 • v(6)+6 • v(2)=N+l. 

(i) There is one point with m = 6, F3-rational and fixed by w, if iV=l 
(mod 6), otherwise none. 

(ii) There are two points with m=4, F9-rational, conjugate over Fz, 
and interchanged by w, ifN= 1 (mod 4), otherwise none. 

(iii) The points with m=2 are all rational over F9. The number of them 
which are F3-rational is 1 ifN=\ (mod 6), and otherwise 0. 

Finally, one can count the number of values of j e FQ such that the 
corresponding E has a given endomorphism ring, by theorems of Deuring 
[3], This, together with the generalizations of the theorems above, reduces 
the question of counting the number of points on Y0(N) over Fq to a 
computation involving class-numbers and Legendre symbols. 

In characteristic 2, for example, X0(N) has 2 cusps, jp2-rational, and 
points o very=0, F2~ and jF4-rational as described by Theorem 3 ; in addition 
we have points overy^O, oo as follows. As above, put —d=(Tr—7r)2= 
(7r+7r)2—4q; d will be odd and positive foryVO. Then we have 

points overy=l on X0(N)(F2\ and 
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points over FA9 and 

4 • (-3))+•(«*(-S» 
points over F69 and so forth. 

EXAMPLE. Let c, be the number of points on X0(47)(/v). We have 
2 cusps, /^-rational, and 4 points overy=0, /^-rational only. Since 

since 

( - ^ ) = + l , c2 = 2 + 4 + 4 = 1 0 . 

Continuing, we find c3=14, c4=18. 
The formulas connected with the zeta-functions of curves over finite 

fields (Weil [14, pp. 60-72]) give us the number of points on the Jacobian, 
rational over a finite field, as follows. Let X be a curve of genus g ^ l 
over Fa, and let / be its Jacobian. Let h be the order of J(Fq), and let ct 

be the order of X(Fgi). We have 2g complex numbers nl9 7r2, • • • , iT2g 

(the eigenvalues of the Frobenius endomorphism on the first cohomology 
group) satisfying the Lefschetz formula 

(10) l+q*-Ci = St = 77* + 7r| + • • • + < • 

We assume that cl9 c2, • • • , cg are known, and hence ^l5 s2, • • • , ^ are 
known. Put 

2flr 

(11) f{x) = I I (^ - *ù = x29 + "I*2*"1 + • ' • + <*2a-i* + a*. 

Here af is the ith elementary symmetric function in — itl9 — 7r2, • • • , — 7r2i/. 
We can order the ^ so that 7^=77^, for l r g / ^ g ; note that a2g^~ 
q9~%. Putting bi=7Ti+'7Ti we get 

f(x) = f l (x - TT,)(X - 7?,) = f l (x2 - b,x + q). 

With y=x+qlx we have 

m = *-*ƒ (x) = f l (y - bi) 
(12) = (x ' + iq/xY) + a^-1 + iq/xf'1) 

H + ag_xix + qjx) + ag 

= ag + ag_xy + ag_2iy
2 - 2q) + ag_3( ƒ - 3qy) + • • • . 
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Finally, al9 a2, • • • , ag are calculated from sl9 s2i • • • , sg by the formulas 
(from any book on symmetric functions) 

—a1 = sl9 

—2a2 = ajSi + 52, 

(13) —3a3 = a25i + a ^ + s3, 

— g ^ = Qg-iSi + • ' • + fliV-i + V 
The formula for h=hQ=\J(FQ)\ is 

(14) h=f(l) = F(g+l). 

Let us now analyze Z0(47). We have g=4, and (0)-(oo) defines a rational 
point of order «=23 (cf. (7)) on /0(47). Taking q=2, we found above 
Ci> ' ' ' , c4, so by the scheme above we find 

c± = 2 Si = 1 #! = — 1 

c2 = 1 0 s2 — ~~5 û2
 = 3 

C3 = 14 S3 = — 5 03 = —1 

c4 = 18 4̂ = — 1 Û4 = 3 
and 

*i00 = 3 - y + 30* - 4) - 0* - 6j) + (y* - 8 / + 8) 

Then h2=F2(3)=23. Similarly, we find A3==F3(4)=7 • 23, which is enough 
to check Conjecture 2 for this case. F2(y) is irreducible; since it is the char­
acteristic polynomial of the Hecke operator T2 on the cusp forms of weight 
2 for r0(47), it follows that /0(47) is irreducible over Q. Then Mazur's 
"chosen factor" is all of/0(47), so J0(47)(Q) is the cyclic group of order 
23 on (0)-(oo). 

Suppose 70(47) has a rational point P. Then (P)-(oo) is equivalent 
to m((0)-(oo)), where m is an integer modulo 23, and m^O, 1. Reducing 
modulo 2, which is injective on our group of order 23, we have the same 
equation for the reduced points, which is not possible since we saw above 
that Y0(47)(F2) is empty. Hence F0(47)(2) is empty, i.e. no elliptic curve 
over Q admits a rational isogeny of degree 47. 

Similar calculations show that Y0(N)(Q) is empty for JV=29, 31, 41, 
59, 71 ; for JV=23, a different argument was required, using an equation 
for the curve, but we still have that Y0(23)(Q) is empty. These are the 
primes N for which g+=0 (cf. (9)), i.e. X0(N) is hyperelliptic with hyper-
elliptic involution w (cf. [Il]); as such these cases are atypically easy. 
(Our knowledge is chiefly about the minus part of J0(N)9 so it simplifies 
matters if the plus part vanishes.) 
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4. Rational points on X0(N) in the general case. Let N be a prime 
with g = 2 ; assume that ^7*23, 29, 31, 41, 47, 59, 71, where we know 
that Y0(N)(Q) is empty, i.e. assume that g + > 0 . 

There are two cases where rational points on Y0(N) are known. The 
first case is that of the rational fixed points of the canonical involution w. 
Such a point is represented by an elliptic curve over Q with complex 
multiplication by yJ—N. Since the curve is defined over Q, the class-
number of Q{sJ—N) is 1, and so JV=43, 67, 163 by the theorem of 
Heegner-Stark-Baker. Conversely, for these three values, there is exactly 
one rational fixed point of w. (Whimsical remark. Perhaps there will be 
a proof someday that Y0(N)(Q) is empty for N sufficiently large, thus 
giving another solution to the problem of class-number 1.) 

More interesting is the very special case of N=37, exhaustively analyzed 
in [7]. ^ (37 ) is hyperelliptic, since g = 2 , i.e. ^ (37 ) divided by a certain 
involution v is of genus 0. However v^w, since g + = l . Putting u=v • w 
(also an involution), J^(37) is the same as ̂ (37 ) divided by u; it is of 
genus 1 and has exactly 3=num((37 —1)/12) rational points. Lifting 
back, ^ ( 3 7 ) has at most six rational points; actually there are four: 
the two rational cusps, and their images under v. Thus Y0(37)(Q) consists 
of two points, interchanged by w. 

It is shown in [11] that N=37 is the only case where X0(N) is hyperelliptic 
with an "exceptional" hyperelliptic involution v. We assume henceforth 
that NTA31 as well as g+>0 (already assumed above). We are then in the 
general situation: X0(N) is not hyperelliptic, and the plus-factor of J0(N) 
is not trivial. In this case the mapping 

(15) X0(N)^Jö(N\ 

carrying P to the class of (P)-(wP), is injective on the complement of 
the set of fixed points of w. In many cases, this allows us to proceed with 
the same facility as in the cases at the end of the previous section, where the 
plus-factor was trivial. For example, for JV=83, g=7 and g+= 1 ; Mazur's 
descent theory shows that /o"(83)(g) is cyclic of order « = 4 1 , and by 
reduction modulo 2 we find that 7O(83)(0 is empty. 

(Details. X0(83)(F2) consists of 3 points, the two cusps, and one point 
over y=0 , with ra=2, necessarily fixed by w. As before, a rational point 
of r0(83) would then be fixed by w, which we know is not the case.) The 
same sort of method shows that Y0(N)(Q) is empty for N=6l, 79, 89, 
and many (but not all !) other values of N. 

Now suppose that Y0(N) has a rational point P. We assume that P 
is not fixed by w. (As shown above, there is exactly one such point for 
JV=43, 67, 163, and for no other N.) Suppose that (P)—(wP) is in our 
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group of order n on (0)-(oo): 

(16) ( P ) - ( H ; / > ) ~ ™ ( ( 0 ) - ( * > ) ) , 

where m is an integer modulo n, ra^O, ±1 . (m=0 only if P is fixed by 
w, and m=±l only if P is a cusp.) This assumption will be satisfied if we 
know that J^(N)(Q) is finite, and cyclic of order n; by Mazur's descent 
theory, and by some recent work of A. Brumer and K. Kramer on the 
nonchosen minus-factors, this will be true for all N<250 with the possible 
exceptions of JV=151, 193, 199, 227. By using the description of Deligne 
and Rapoport [2] of the Néron model of X0(N) at the bad prime N, 
Mazur [6] concludes that actually m=±i, say /w=£, i.e. JVs — 1 (mod 3) 
and we have 

(17) 3(P)+ (oo)~3(wP)+(0). 

From this Mazur quickly concludes that N=53, 113, 137 are the only 
possible values of N among N<250 (#=23, 29, 41 having been eliminated 
already). On the other hand, a trick I developed in [11] shows that (17) 
will not hold for any #>250. (Reducing modulo 2, we have a map of 
degree at most 4, defined over F2, of X0(N) onto the projective line. 
Hence X0(N)(Fé) has at most 4(l+4)=20 points. Since it has more than 
N/12 points over y=0 (cf. Theorem 3), we get #<240.) As it happens, 
for many values of N both this method and the more naive method de­
scribed above of reducing modulo suitable primes p^N are successful; 
unfortunately, both seem to fail for #=53 , 113, 137. However, one can 
no doubt settle these cases by a closer examination (finding an equation 
for the curves if it comes to that), but for the moment we know only that 
70(#)(Ô) has 0 or 2 points. 

To sum up, all of these various methods have shown that if N is a prime 
= 2 3 , then Y0(N)(Q) 

(i) has exactly two points for N=37, 
(ii) has exactly one point for JV=43, 67, 163, 
(iii) has 0 or two points for #=53 , 113, 137, 
(iv) is not known for #=151, 193, 199, 227, and 
(v) is empty for all other #<250. 

Looking ahçad, X0(N) has not yet been analyzed for the composite 
values #=65 , 91, 125, 169, but if we assume that that will be done and 
that the various gaps in our knowledge for a prime #<250 will be filled, 
the essential difficulty seems to be the following. For a large prime # 
it is expected that Jo~(#) will have a relatively large "chosen" part, to 
which Mazur's descent theory applies, and a smaller but nontrivial 
nonchosen part, which in some cases (e.g. #=389) will have an infinite 
number of rational points. It may well be that the mapping (15), followed 
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by the projection onto the chosen factor, is still injective, but even if that 
is so it will be hard to study the map systematically. Perhaps it is more 
realistic to hope that some entirely new idea will come to our rescue for 
large N. 
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