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I. Introduction. Let E be a C°° fiber bundle over a C°° finite-di­
mensional compact Riemannian manifold M, possibly with boundary. The 
generalized variational "Dirichlet problem" studies the critical points of a 
functional J(u) = ƒ L(u)9 where L, the Lagrangian, is a differential opera­
tor from sections of E with prescribed boundary values to sections of the 
trivial line bundle, RM. We consider existence, and especially the question: 
if / satisfies the Palais-Smale condition (C) (which insures the existence of 
critical points if / is bounded below [3], [5] ), then under what conditions 
on a perturbation 1/ can one show that J - M also satisfies condition (C). 
One part of this involves investigating the more classical question of finding 
conditions on L such that \\u\\ —> °° implies \J(u)\ —• <». This is an im­
portant ingredient in using monotonicity methods in proving existence theo­
rems for nonlinear partial differential equations [1]. 

For a smooth vector bundle £ over M, let Lp
k(%) be the Sobolev 

space of sections whose covariant derivatives up through order k are in 
£p(t)> with norm || \\Ptk, while Lp

k(g)0 is the subspace with "zero boun­
dary values". It is easy to see that a functional J having the following two 
properties satisfies condition (C). 

(a) / is pseudo-proper if \\u\\p^k —> °° implies \J(u)\ —» °°. 
(b) / is coercive if given any bounded sequence Uj such that 

(DJU. - DJu)(u( - uj) —> 0, then u. has an Lp
k convergent subsequence. 

(In the literature property (a) is sometimes referred to as the coercive 
condition.) 

Our results are of two sorts. First, assuming that J0 is pseudo-proper 
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(resp. coercive), we find conditions on a perturbation 1/ = ƒ V such that 
J — J0- 1/ is also pseudo-proper (resp. coercive). This is more than a stabil­
ity question. It is not difficult to show that if 1/ is "small" enough, then 
it preserves the two conditions. We ask, rather, how large (/ can be. Second, 
we investigate necessary conditions on L such that / = ƒ L is pseudo-
proper. There is a fine line between perturbation results and necessity results, 
so this delineation may occasionally seem arbitrary. 

For ease in exposition, we will not attempt to give the most general 
version of any of our results. 

II. Perturbation theory. We begin with an especially illuminating and 
useful special case. For u EL\(M, R)0 , let J0(u) = ƒ Ivwl2 = ||u||| r 

Let V: M x R —• R be continuous, and Xx > 0 be the first eigenvalue of 
the Laplacian. Finally, let J(u) = J0(u) - ƒ V(x, w). 

THEOREM l'. (a) Assume 

(l ' ) V(x, s) < const + Ks2 for all s G R. 

If 

(2') K<\19 

then J is bounded below and pseudo-proper. 

(b) If 

(3') V(x, s) > const 4- X^ 2 , 

then J is not pseudo-proper. 

Part (a) of Theorm l ' says that if V grows at most quadratically, 
with a growth rate bounded by Xi, then / will be pseudo-proper. This 
condition on V can be viewed as an asymptotic growth estimate; compare 
with [6, §8] . Unlimited growth in the "negative" direction is allowed. For 
example, V(x, u) = -eu 4- a(sin u)u2 satisfies inequality (l ') . Part (b) 
shows the growth restrictions in (a) are sharp. 

To prove part (a), we observe that \ t is the best constant in the 
Sobolev inequality 

fu2 <~JlVt/l2, uEL2(M9 R)0. 

For (b), we explicitly construct a sequence of functions Uj such that 

\J(uj)\ is bounded, but ll«yll2,i ~ * °°-
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Theorem l ' extends to more general functionals J0 on Z,£(£) with 

prescribed boundary values. Here we give the case J0(u) — IMIp>fc on 

f̂c(£)o> wriere % = Œ x R, for a bounded open domain Q, C Rn. 

THEOREM 1. (a) Assume that 

(1) V(x, 0*u) < const + 2 a^x)D^u • • • / A w , 

where lal < k - 1, <wd ]3 = (iSj, • • • , j3p) M # p-tuple of multi-indices 

with \pj\<k-l. Then there are "best" constants K^ such that f or all 

fa^D^u--- l/Pu<y\\u\\Ptk. 

(2) Moreover, if 2 J^ < 1, ^ e « J0 - f V is bounded be­
low and pseudo-proper. 

(b) If there is a differential operator P(x, Dau), homogeneous in u 

of degree r>p, and \p G C£(12) such that P(x, Da\p) > 0, <wid 

(3) H*, Dau) > const + P(x, Dau), 

then J0 - ƒ V is not pseudo-proper. In fact, (3) need only hold on some 
open set in £"2. 

We can give an explicit upper bound for each K» in terms of con­
stants in the Sobolev embedding theorems. 

For our results on coercivity, we need the notion of the weight of a 
polynomial differential operator (one that locally is a polynomial in the deri­
vatives of u, whose coefficients may depend on u, but not its derivatives). 
The weight of a monomial a(x, u)D(*lu • • • D^mu is \px I + • • • + l/?wl; 
the weight of a polynomial is the largest weight that occurs in its monomials. 
If pk> n = dim M, we can give L^{E) the structure of a C°° infinite-
dimensional Finsler manifold modeled on !%(£) [2]. We work on this 
manifold of maps. 

Consider JQ(u) = ƒ L(u)9 where L is a polynomial differential opera­
tor of order k and weight pk (the weight condition insures L is smooth 
from L%(E) to L Q ( R M ) ) . The perturbations will also be polynomial of 
weight at most pk, and will only depend on the (k - l)-jet of u. Under 
these hypotheses, we have the best possible result. 

THEOREM 2. Let J0(u) - ƒ L(u) as above, and V(u) be a polynom-
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ial differential operator of order fc-1. If J0 is coercive on L%(E), and 

the weight of V is at most pk, then J = J0 - ƒ V is coercive on L%(E). 

The main ingredient of the proof is to show that if \\u\\ k is bounded, 
then (DVU. -DVu)(ui - uj) —» 0. If pk is much bigger than n, then V 
can have higher weight. For example, if p> n, then V can be any C1 

function of the (k - l)-jet of u. 

III. Necessary conditions. We seek algebraic necessary conditions for 
polynomial Lagrangians to be pseudo-proper. To begin with, we note that 
for a strict polynomial Lagrangian (coefficients are polynomial in u) to give 
rise to a pseudo-proper functional on L%(£), p must be an even integer. 
Now we show that certain perturbations preserve pseudo-properness. 

THEOREM 3. Let J0 : L%(%) —• R be pseudo-proper, and homogeneous 

of degree p. If I/: //£(£)—>R consists of a finite sum of terms continuous 

on Lp
k(g) and homogeneous of degree less than pt then J = J0 - 1/ is 

pseudo-proper. 

If L is a linear differential operator of order k, then one can show 

that J(u) = f\Lu\p is pseudo-proper on L^.{%)0 if and only if L is el­

liptic, with trivial kernel. Combined with Theorem 3, this implies that 

ƒ (Aw)4 ± (uxx - u ) 3 is pseudo-proper, despite the hyperbolicity of the 
uxx ~" uyy perturbation. 

There are simple counterexamples to the converse of Theorem 3. How­

ever, we can prove a partial converse, which essentially says that if / = J0 

- I/, as above, is pseudo-proper, then so is J0, modulo a term of the form 

i\uf. 
The moral of Theorem 3 and its converse, is that the "principal term" 

of a polynomial Lagrangian in the determination of pseudo-properness, is the 
one of highest order and highest homogeneity. Our main result shows a 
positivity condition on the principal term is necessary for pseudo-properness. 

Let J(u) = ƒ Liu), where JL is a fcth order strict polynomial dif­
ferential operator from % — £1 x R, £1 C R", to RM, homogeneous of 
degree p. We can write 

(4) L(u) = P(x; D^u) + Q(x; D^u), Id < k, 

where P and Q are polynomial differential operators with smooth coef­

ficients in x9 homogeneous of degree p\ P involves only fcth order dériva-
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tives of w, and Q has no term consisting of a product of p fcth order 

derivatives. 

THEOREM 4. If J{u) is as above, and pseudo-proper on /,£(£), then 

P is "positive", in the sense that there is a constant c > 0 such that for all 

xen, and all f G R " , 

(5) \{\P*<c\P(x;n\. 

For the case p = 2, condition (5) says the bilinear form associated 
with P(x; Dau) is uniformly strongly elliptic. In this case, using Gardings 
inequality, one can show that if L has the form (4), and (5) holds for all 
x G £2, then there is a constant K > 0 such that J(u) + K\\u\\\ 0 is pseudo-
proper on L\(ji). 

In proving Theorems 3 and 4, we use the observation that if a functional 
/ is pseudo-proper on Lp

k(g), and homogeneous of degree r > 0, then 
there is a constant C> 0 such that \\u\\p

pk < C\J(u)\p/r. 

This inequality is reminiscent of the fundamental inequality for linear 
elliptic operators. 
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