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Much of the classical Sturm oscillation theory extends to selfadjoint dif­
ferential equations of order 2n if the notion of "oscillation" is formulated 
in terms of conjugate points determined by nontrivial solutions with nth 
order zeros at two distinct points. The standard techniques for achieving such 
generalizations also allow one to establish d/sconjugacy criteria'in the nonself-
adjoint case (see [1] - [4 ] ) , but I know of no corresponding criteria for the 
existence of conjugate points when the equation under consideration is not 
selfadjoint. 

The purpose of this note is to sketch a technique which deals with the 
sufficiently regular general real fourth order equation 

(1) l\y] = (P2(tV ~ q2(t)y')" - (pt(ty - qi(t)y)' + p0(t)y = 0, 

and establishes the existence of a j3 > a such that 

y(a)=y'(a) = 0=y((3)=y'(P) 

is satisfied by a nontrivial solution y(t) of (1). A detailed proof will appear 
elsewhere. 

We begin with an oscillation preserving transformation used by the 
author [5] to eliminate the third order term 0z2 (*)/)"• Generalizing upon 
a technique used by Whyburn [6] for selfadjoint equations, one can then 
obtain a representation of (1) in the form 

(2) y" = a(t)y + b(t)x9 x" = c(t)y + d(t)x 

where b(t) = l/p2(t) > 0, and the formulas for the other coefficients of 
(2) are given in [5] . The system (2) allows an obvious dynamical interpreta­
tion in terms of a particle of unit mass moving in the xt >>-plane. By an 
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appropriate normalization, solutions of (1) satisfying y (a) = y'(a) = 0 may 
be represented by a one-parameter family of trajectories C(v0) determined by 
the initial conditions 

y(a) = ƒ (a) = 0; x(a) = 1 ; x'(a) = v0. 

We therefore seek an appropriate value of v0 such that a particle fired from 
(1, 0) with an initial velocity v0 in the direction of the positive x-axis will, 
at some later time t = |3, again move tangent to the x-axis. Labelling the 
open quadrants of the x, j-plane I, II, III, and IV, a topological argument 
shows that the following four conditions on the force field determined by (2) 
suffice to assure existence of such a trajectory: 

If for some t0 > a the quantities y(t0),y'(t0), x(t0) 

(A) and x'(t0) are all nonnegative (but not all zero), then 

y(t), y'(t)9 x(t) and x\t) are all positive for t> t0. 

No trajectory C(v0) can remain in II for arbitrarily 

large values of t. 

No trajectory in I satisfies 
(0 *(0 ^ x0>0 and y(t) t °° as t —• °°, or 

^ ^ (ii) y (f) ±y0 > 0 and x(t) t <*> as t —> <*>, 
nor can any trajectory in I tend to a finite limit point 
(x0, y0) in the closure of I as t —• <*>. 

(D) No trajectory can go directly from II to I to II. 

There remains the problem of translating these qualitative criteria into 

quantitative conditions on the coefficients of (2), the most difficult being (B). 

One set of conditions which can be shown to be sufficient is contained in the 

following 

THEOREM. If the coefficients of (2) satisfy 

(i) c(t)>a(t)>0'9 b(f)>d(t)>0\ 

(ii) u" + min {b(t) - d(t\ c(t) - a(t)}u - 0 is oscillatory at t = °°; 

(iii) r tb(t)dt = r tc(t)dt = °o; 

then there exists a nontrivial solution y(t), x(t) of (2) satisfying y(a) = 

ƒ (a) = 0 = y(P) = ƒ (0) for some 0 > a. 

When the conditions of this theorem are translated back to the original 
equation (1), they require that the coefficients p2(t) and p0(t) dominate 
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px(t) and qx(t) in an appropriate sense and that l/p2(t) and p0(f) not 
go to zero too quickly. In the special case ^ ^ 0 = 0, qt(t) = 0, and p0(t) 
< 0, our criteria are satisfied if 

lim inf t2 min j ^ - ^ , ~p0(t) 

while Leighton and Nehari [6] essentially require 

liminf*2™~r > i and lim inf f2(-p0(f)) > i 

A comparison of these conditions suggests that the criteria of the Theorem are 
reasonably sharp. 

While the Theorem above establishes the existence of a conjugate point 
in the nonselfadjoint case, it does not provide explicit upper bounds for 0. 
It is hoped, however, that these techniques may also prove useful in this regard. 
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