RADICAL EMBEDDING, GENUS, AND TOROIDAL DERIVATIONS OF NILPOTENT ASSOCIATIVE ALGEBRAS

BY F. J. FLANIGAN

Communicated by Mary Gray, March 11, 1974

ABSTRACT. The author continues to discuss this problem: given a nonzero nilpotent finite-dimensional associative algebra N over the perfect field k, describe the set of unital associative k-algebras A satisfying the equation rad A=N, together with the "nowhere triviality" condition $\operatorname{Ann}_A N \subset N$. In this paper the Lie homomorphism $\delta: S_{\text{Lie}} \to \operatorname{Der}_k N$ induced by bracketing (where A has Wedderburn decomposition as semidirect sum S+N) is studied as follows: (i) the kernel and image of δ are computed; (ii) conditioning the derivation algebra $\operatorname{Der}_k N$ conditions the semisimple S; (iii) for instance, $\operatorname{Der}_k N$ solvable implies that S is a direct sum of fields; (iv) those tori in $\operatorname{Der}_k N$ of the form δS are characterized in terms of their 0-weightspace in N.

- 1. Introduction. For previous discussions, see Hall [2] and Flanigan [1]. Throughout, N is a given finite-dimensional nilpotent k-algebra with k perfect. We seek those semisimple k-algebras S which satisfy the following conditions.
- (1.1) DEFINITION [1]. N accepts S as a nowhere trivial Wedderburn factor if there is a unital associative k-algebra S A such that (i) $A \simeq N + S$ (Wedderburn decomposition), and (ii) $S \cap \text{Ann}_A N = (0)$.

Note that (ii) forces A to be finite dimensional, and that $N \neq (0)$ implies $S \neq (0)$. In [1] we examined candidates S for acceptance by considering such invariants of N as its quotients N/N^i and its graded form gr N. Now we utilize the Lie algebra $\operatorname{Der}_k N$ of k-algebra derivations $N \rightarrow N$ by noting that, if N accepts S as in (1.1), then there is a Lie homomorphism

$$\delta: S_{\text{Lie}} \to \operatorname{Der}_k N$$

with $\delta(b)x = [b, x] = bx - xb$ for all x in N, b in S, and with the products taken in A.

We are particularly interested in those S which are direct sums of fields. *Reason*: the center of *every* semisimple algebra accepted by N would be of this type. These direct sums of fields are determined by the

AMS (MOS) subject classifications (1970). Primary 16A21, 16A22; Secondary 16A58.

"genus" of N (§3). Thus, genus(N)=0 means that the only S, commutative or not, accepted by N is essentially that obtained by the well-known process of adjoining a unity to N. In §4 we bound genus(N) in terms of the dimension of maximal tori in $\operatorname{Der}_k N$ and from this draw consequences for S. The family of examples in §5 shows that this upper bound on genus(N) may or may not be attained for a given N, and if not, it is because there exists an abelian S_{Lie} and Lie homomorphism $S_{\text{Lie}} \to \operatorname{Der}_k N$ which is not induced by bracketing (see (1.2)) in an associative A=N+S. Finally, we identify those tori ("Peirce tori") in $\operatorname{Der}_k N$ which are of the form $\delta(S_{\text{Lie}})$ in terms of the associative algebra structure of their 0-weightspaces in N (§6). The Peirce tori are those whose weightspace decomposition of N is essentially a Peirce (idempotent) decomposition in the classical sense.

It is a pleasure to acknowledge helpful conversations and correspondence with Robert Kruse, George Leger, and James Malley.

- 2. The Lie homomorphism δ . It often makes good sense to specify that (i) N is indecomposable (into two-sided ideals) as a k-algebra, and that (ii) the semisimple k-algebra S is split over k, that is, S is an ideal direct sum of total matrix algebras $M(r_{\alpha}, k)$ of rank r_{α} with all entries in k. This latter is always the case if k is algebraically closed.
- (2.1) Lemma. Let the nonzero indecomposable nilpotent k-algebra N accept the split semisimple $S = \bigoplus_{\alpha} M(r_{\alpha}, k)$, with $\alpha = 1, \dots, s$, as a nowhere trivial Wedderburn factor. Then the map δ of (1.2) satisfies
 - (i) $\ker(\delta)$ is the one-dimensional Lie ideal $k \cdot 1 = k \cdot 1_S$;
- (ii) if char(k) divides none of the ranks r_{α} , then the image of δ is isomorphic with the Lie algebra

$$\left(\bigoplus_{\alpha} sl(r_{\alpha}, k)\right) \oplus \left(\left(\bigoplus_{\alpha} k \cdot e_{\alpha}\right) / k \cdot 1\right) \qquad (\alpha = 1, \dots, s),$$

where e_{α} is the unity element of $M(r_{\alpha}, k)$;

- (iii) S is a direct sum of copies of k, that is, all $r_{\alpha}=1$ if and only if the image of δ is a torus in $\operatorname{Der}_k N$.
- (2.2) COMMENTS. (a) If $s \ge 2$, then $\ker(\delta)$ is therefore a proper subalgebra of the center of S_{Lie} ;
 - (b) The Lie algebra $sl(r_{\alpha}, k)$ consists of the matrices with trace zero;
- (c) $k \cdot e_{\alpha}$ is the subalgebra of scalar matrices in $M(r_{\alpha}, k)$, and $1=1_S=e_1+\cdots+e_s$;
- (d) A torus is an abelian linear Lie algebra consisting of semisimple operators;
- (e) The Lemma follows from elementary considerations of twosided matrix actions on N. The proof does not require nilpotence of N,

but only that N be an ideal in A=S+N. The Lemma is false, however, if N is itself decomposable as a direct sum of two-sided ideals.

- (2.3) Question. If N accepts a maximal (see [1]) split S, does the map δ always send the center of S into the solvable radical of $\operatorname{Der}_k N$? An affirmative answer would yield a much more severe constraint on S. This would be reflected in statement (iii) of Theorem (4.1), where the integer t(N) could then be replaced by a smaller and better understood number, the dimension of a maximal torus in the solvable radical of $\operatorname{Der}_k N$.
- 3. Genus(N) and t(N). The genus will provide a measure of the "fineness" of the Peirce decompositions which N admits.
- (3.1) Definition. If N is a nonzero nilpotent k-algebra, then genus $(N) = \max_{S} (\dim_{k} S) 1$, where $S = ke_{1} \oplus \cdots \oplus ke_{s}$ is a direct sum of s copies of the field k accepted by N as a nowhere trivial Wedderburn factor.

Thus genus(N) ≥ 0 and, if $N=I_1\oplus\cdots\oplus I_q$ is a decomposition into non-zero two-sided ideals, then one readily checks that genus(N)= $q-1+\sum_i \operatorname{genus}(I_i)$, and that this is ≥ 1 if $q\geq 2$.

- (3.2) EXAMPLE. Let N be the nilpotent algebra of all strictly upper triangular n by n matrices over k. Then genus(N)=n-1. See [1, (2.3)].
- (3.3) EXAMPLE. Let N be the truncated polynomial ideal generated by linearly independent (over k) noncommuting elements x_1, \dots, x_m such that every monomial of degree $\geq \nu+1$ reduces to zero, so that $N^{\nu}\neq (0)$ but $N^{\nu+1}=(0)$. If $\nu\geq 2$, then N is indecomposable and genus(N)=0 independent of m. See [1, (2.4)].

The following invariant of N was introduced by Leger and Luks [3, $\S1$] to study nilpotent Lie algebras.

(3.4) DEFINITION. t(N) is the dimension of a maximal torus in the derivation algebra $\text{Der}_k N$.

Thus, if $\operatorname{Der}_k N$ is nilpotent, then t(N)=0.

- 4. **Results on S.** These follow from Lemma (2.1) and the basic structure of algebraic Lie algebras.
- (4.1) THEOREM. Let the nonzero indecomposable nilpotent k-algebra N accept as nowhere trivial Wedderburn factor the split semisimple $S = \bigoplus_{\alpha} M(r_{\alpha}, k)$, with $\alpha = 1, \dots, s$. Then
- (i) if char k=0 and a Levi factor of $Der_k N$ has no nonzero subalgebras sl(n, k), then S is a direct sum of copies of k;
 - (ii) if $Der_k N$ is solvable, then S is a direct sum of copies of k;
 - (iii) $(\sum_{\alpha} r_{\alpha}) 1 \leq \operatorname{genus}(N) \leq t(N)$;
- (iv) in particular, if $\operatorname{Der}_k N$ is nilpotent, then $\operatorname{genus}(N)=0$, that is, S=k.

5. An illustration. This family of algebras will provide counter-examples to the converses of certain assertions in (2.1) and (4.1). Let char $k \neq 2$ and, for each τ in k, let N_{τ} be the 3-dimensional k-algebra with basis x, y, z and multiplication xy=z, $yx=\tau z$, and all other products of basis elements zero. Note that $(N_{\tau})^3=(0)$, so that N_{τ} is associative, nilpotent, and indecomposable.

The following assertions about N_{τ} are easily verified.

- (5.1) N_0 accepts $S=ke_1 \oplus ke_2 \oplus ke_3$ (cf. 3 by 3 upper triangular matrices). Genus $(N_0)=2$. Also $t(N_0)=2$.
 - (5.2) For $\tau \neq 0$, genus $(N_{\tau})=0$, but again $t(N_{\tau})=2$.
- (5.3) All $\operatorname{Der}_k N_{\tau}$ are solvable nonnilpotent with 2-dimensional maximal torus.
- (5.4) The maximal tori in all $\operatorname{Der}_k N_{\tau}$ are isomorphic, and all modules N_{τ} are equivalent.
- (5.5) Moral. The structure of $\operatorname{Der}_k N$ and its natural representation on N (as discussed so far) are not sufficient to decide genus(N). The conditions we give in §6 that a torus in $\operatorname{Der}_k N$ be of the form $\delta(S)$ as in (1.2) must necessarily involve the associative product in N.
- 6. Peirce tori and direct sums of fields. We characterize in terms of $\operatorname{Der}_k N$ the direct sums of fields accepted by N. Here "eigenvalues" and "weights" refer to the natural representation of $\operatorname{Der}_k N$ on N.
- (6.1) DEFINITION. Let N be an indecomposable nilpotent k-algebra. The torus T in $\operatorname{Der}_k N$ is a *Peirce torus* if either T=(0) or T has a spanning set $\varepsilon_1, \dots, \varepsilon_m$ with $m \ge 2$ satisfying these four conditions:
 - (a) $\varepsilon_1 + \cdots + \varepsilon_m = 0$, but any m-1 of the ε_i furnish a k-basis for T;
- (b) the set of eigenvalues for each ε_i is either $\{0, 1\}$, $\{0, -1\}$, or $\{0, 1, -1\}$;
- (c) each nonzero weight of T is of the form λ_{ij} , defined by $\lambda_{ij}(\varepsilon_i)=1$, $\lambda_{ij}(\varepsilon_i)=-1$, $\lambda_{ij}(\varepsilon_h)=0$ for h, i, j distinct;
- (d) the 0-weightspace W_0 in N decomposes as k-algebra into a direct sum $\bigoplus_i W_i$ of two-sided (possibly zero) ideals, $i=1,\dots,m$, satisfying (here W_{ij} is the λ_{ij} -weightspace) for distinct h, i, j,

$$W_{ij}W_{ji} \subset W_i, \qquad W_iW_{hj} = (0), \qquad W_{hj}W_i = (0).$$

A Peirce torus yields a standard Peirce decomposition $N = \bigoplus_{i,j} e_i N e_j$ with respect to orthogonal e_1, \dots, e_m via the definitions $e_i N e_i = W_i$, $e_i N e_j = W_{ij}$ for distinct i, j.

(6.2) THEOREM. The indecomposable nilpotent k-algebra N accepts $S=ke_1\oplus\cdots\oplus ke_s$ as nowhere trivial Wedderburn factor if and only if $\operatorname{Der}_k N$ contains a Peirce torus of dimension s-1.

REFERENCES

- 1. F. J. Flanigan, Radical behavior and the Wedderburn family, Bull. Amer. Math. Soc. 79 (1973), 66-70. MR 46 #5373.
- 2. Marshall Hall, Jr., The position of the radical in an algebra, Trans. Amer. Math. Soc. 48 (1940), 391-404. MR 2, 122.
- 3. G. Leger and E. Luks, On derivations and holomorphs of nilpotent Lie algebras, Nagoya Math. J. 44 (1971), 39-50. MR 45 #6880.

DEPARTMENT OF MATHEMATICS, SAN DIEGO STATE UNIVERSITY, SAN DIEGO, CALIFORNIA 92115.