FINITE-DIMENSIONAL REPRESENTATIONS OF SEPARABLE C*-ALGEBRAS

BY CARL PEARCY AND NORBERTO SALINAS

Communicated by P. R. Halmos, February 11, 1974

Let \mathscr{H} be a separable, infinite-dimensional, complex Hilbert space, and let $\mathscr{L}(\mathscr{H})$ denote the algebra of all bounded linear operators on \mathscr{H} . Furthermore, let \mathscr{H} denote the (norm-closed) ideal of all compact operators in $\mathscr{L}(\mathscr{H})$, and let $\pi : \mathscr{L}(\mathscr{H}) \rightarrow \mathscr{L}(\mathscr{H}) | \mathscr{H}$ denote the canonical quotient map of $\mathscr{L}(\mathscr{H})$ onto the Calkin algebra. If T is any operator in $\mathscr{L}(\mathscr{H})$, we shall denote by $\mathscr{C}^*(T)$ the C^* -algebra generated by T and $T_{\mathscr{H}}$. Moreover, the T_{-1} -algebra T_{-1} -algebra generated by T_{-1} -and T_{-1} -and T_{-1} -by which is clearly the T_{-1} -subalgebra of the Calkin algebra generated by T_{-1} -and T_{-1} -and T_{-1} -by will be denoted by T_{-1} -algebra, an T_{-1} -dimensional representation of T_{-1} -algebra T_{-1} -by definition, a *-algebra homomorphism T_{-1} -algebra T_{-1} -by definition, a *-algebra homomorphism T_{-1} -by T_{-1} -by a representation T_{-1} -by will be called irreducible if T_{-1} -by T_{-1} -by T_{-1} -by and T_{-1} -by an T_{-

The first objective of this note is to announce the following theorem, which gives, via the standard decomposition theory, a characterization of all finite-dimensional representations of a separable C^* -algebra. See [2].

THEOREM 1. Let \mathscr{A} be a separable C^* -subalgebra of $\mathscr{L}(\mathscr{H})$, and let φ be an irreducible n-dimensional representation of \mathscr{A} . Then, either

- (a) $\mathscr{A} \cap \mathscr{K} \subset \text{kernel } \varphi$ (equivalently, there exists an n-dimensional representation $\widetilde{\varphi}$ of the C^* -algebra $\pi(\mathscr{A})$ such that $\varphi(A) = \widetilde{\varphi}(\pi(A))$ for every A in \mathscr{A}), in which case there exists a projection P in $\mathscr{L}(\mathscr{H})$ with infinite rank and nullity such that $\pi(P)$ commutes with the algebra $\pi(\mathscr{A})$, and there exists a *-algebra isomorphism ψ from the C^* -algebra $\pi(\mathscr{A})\pi(P)$ (={ $\pi(A)\pi(P)$: $A \in \mathscr{A}$ }) onto M_n such that $\varphi(A) = \psi(\pi(A)\pi(P))$ for every A in \mathscr{A} , or
- (b) $\mathscr{A} \cap \mathscr{K} \not = \text{kernel } \varphi$, in which case there exist a projection Q in \mathscr{A} of finite rank that commutes with \mathscr{A} and a *-algebra isomorphism η from the C^* -algebra $\mathscr{A}Q$ (={ $AQ:A\in\mathscr{A}$ }) onto M_n such that $\varphi(A)=\eta(AQ)$ for every A in \mathscr{A} .

AMS (MOS) subject classifications (1970). Primary 46L05; Secondary 47C10, 47C15.

In view of this theorem and the fact that the *n*-dimensional representations of the C^* -algebras $\mathscr{C}^*(T)$ and $\mathscr{C}^*_{\varepsilon}(T)$ are determined by their values at the points T and $\pi(T)$, respectively, the following definition is natural.

DEFINITION. Let T be an operator in $\mathscr{L}(\mathscr{H})$, and let n be a positive integer. Then the reducing $n \times n$ spectrum of T is the set $R^n(T)$ consisting of all those matrices L in M_n for which there exists an n-dimensional representation φ of $\mathscr{C}^*(T)$ such that $\varphi(T) = L$. Likewise, the reducing $n \times n$ essential spectrum of T is the set $R_e^n(T)$ consisting of all those matrices L in M_n for which there exists an n-dimensional representation ψ of $\mathscr{C}_e^*(T)$ such that $\psi(\pi(T)) = L$.

Since for a fixed T in $\mathscr{L}(\mathscr{H})$, there is an obvious homeomorphism between $R^n(T)$ [$R_e^n(T)$] and the topological space of all n-dimensional representations of $\mathscr{C}^*(T)$ [$\mathscr{C}_e^*(T)$] (with the pointwise convergence topology), it is possible to study this set of representations by studying the set $R^n(T)$ [$R_e^n(T)$]. The second objective of this note is to announce some results of such a study. Other related results are simultaneously being announced in the *Notices*, since a new format requirement prevents their inclusion here. Proofs are given in [2].

It is easy to see that for every T in $\mathcal{L}(\mathcal{H})$, the sets $R^n(T)$ and $R_e^n(T)$ are compact, and $R_e^n(T) \subset R^n(T)$. Also, if $R^n(T)$ $[R_e^n(T)]$ is nonvoid, then $R^{kn}(T)$ $[R_e^{kn}(T)]$ is nonvoid for every positive integer k. Moreover, it turns out (Theorems 2 and 3) that $R^1(T)$ and $R_e^1(T)$ are the reducing spectrum and the reducing essential spectrum of T, respectively, as defined in [1].

In what follows, C_n will denote the *n*-dimensional Hilbert space of all (column) *n*-tuples of complex numbers, and elements of M_n will be regarded as operators on C_n via the obvious identification.

THEOREM 2. Let T belong to $\mathcal{L}(\mathcal{H})$ and let n be any positive integer. If L belongs to $R^n(T)$ and either L is irreducible or L is a direct sum of irreducible matrices, no two of which are unitarily equivalent, then there exists a sequence $\{B_k\}_{k=1}^{\infty}$ of isometries B_k : $C_n \rightarrow \mathcal{H}$ such that

$$(*) \qquad \lim_{k \to \infty} (\|TB_k B_k^* - B_k L B_k^*\| + \|T^* B_k B_k^* - B_k L^* B_k^*\|) = 0.$$

On the other hand, if L is any matrix in M_n and $\{B_k\}$ is a sequence of isometries $B_k: C_n \rightarrow \mathcal{H}$ such that (*) holds, then $L \in \mathbb{R}^n(T)$.

THEOREM 3. If T belongs to $\mathcal{L}(\mathcal{H})$, n is a positive integer, and $L = (\lambda_{ij})_{i,j=1}^n$ belongs to M_n , the following conditions are equivalent:

- (a) $L \in R_e^n(T)$;
- (b) there exists a sequence $\{B_k\}_{k=1}^{\infty}$ of isometries B_k : $C_n \rightarrow \mathcal{H}$ with mutually orthogonal ranges satisfying (*);
- (c) there exists a sequence $\{B_k\}_{k=1}^{\infty}$ of isometries $B_k: C_n \to \mathcal{H}$ that converges weakly to 0 and satisfies (*);

- (d) there exist n^2 partial isometries $\{W_{ij}\}_{i,j=1}^n$ in $\mathcal{L}(\mathcal{H})$ satisfying the following conditions:
 - (i) $W_{ij}W_{km} = \delta_{jk}W_{im}, 1 \le i, j, k, m \le n;$
 - (ii) $W_{ij}^* = W_{ii}, 1 \le i, j \le n;$
 - (iii) $Q = \sum W_{ii}$ has infinite rank and nullity and $QT TQ \in \mathcal{K}$;
- (iv) $W_{ii}TW_{jj} \lambda_{ij}W_{ij}$ is a trace class operator with arbitrarily small trace norm, $1 \le i, j \le n$.

THEOREM 4. Let T belong to $\mathcal{L}(\mathcal{H})$, let n be any positive integer, and let Ω be any open set in M_n containing $R^n(T)$ [$R_e^n(T)$]. Then there exists a positive number ε such that if $||S-T|| < \varepsilon$, then $R^n(S) \subseteq \Omega$ [$R_e^n(S) \subseteq \Omega$]. In particular, if $R^n(T)$ [$R_e^n(T)$] is void, then $R^n(S)$ [$R_e^n(S)$] is void for all S sufficiently close to T in the norm topology.

THEOREM 5. For each positive integer n, let \mathcal{R}_n denote the set of all operators in $\mathcal{L}(\mathcal{H})$ having an n-dimensional reducing subspace. Then the norm closure of the set $\bigcup_{k=1}^n \mathcal{R}_k$ coincides with $\{T \in \mathcal{L}(\mathcal{H}): R^k(T) \neq \emptyset \}$ for some $1 \leq k \leq n$.

THEOREM 6. Let T be an operator on \mathcal{H} such that $R^n(T) \neq \emptyset$ $[R_e^n(T) \neq \emptyset]$, and let $\mathcal{J}^n(T)$ $[\mathcal{J}_e^n(T)]$ denote the closed ideal that is the intersection of the kernels of all n-dimensional representations of $\mathscr{C}^*(T)$ $[\mathscr{C}_e^*(T)]$. Then the C^* -algebra $\mathscr{C}^*(T)/\mathscr{J}^n(T)$ $[\mathscr{C}_e^*(T)/\mathscr{J}_e^n(T)]$ is *-isomorphic to a subalgebra of the C^* -algebra of all continuous functions from the compact set $R^n(T)[R_e^n(T)]$ into M_n . If n=1, the isomorphism is onto.

BIBLIOGRAPHY

- 1. N. Salinas, Reducing essential eigenvalues, Duke Math. J. 40 (1973), 561-580.
- 2. C. Pearcy and N. Salinas, Finite-dimensional representations of C*-algebras and the reducing matrical spectra of an operator (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104