
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 80, Number 5, September 1974 

ORTHOGONALITY AND NONLINEAR FUNCTIONALS 

BY S. GUDDER AND D. STRAWTHER 

Communicated by Robert Bartle, December 12, 1973 

Let X be a vector space of functions. In practice, Zis taken to be (i) the 
set of continuous functions on some type of topological space or (ii) a set 
of measurable functions on a measure space. We say that x, y e X are 
orthogonal in the lattice theoretic sense (x ±_Ly) if {t:x(t)y(t)j£0} is 0 
in case (i) or of measure zero in case (ii). A real valued functional/:X-+R 
is L-additive if f(x+y)=f(x)+f(y) whenever x _]_Ly. Iff is L-additive 
and satisfies certain continuity or boundedness conditions then ƒ admits 
an integral representation giving a nonlinear generalization of the 
Riesz theorem. Such representations have been obtained for case (i) in 
[1], [4] and for case (ii) in [2], [3], [10], [11], [12], [14]. Although the 
above orthogonality is important for certain applications [5], [9], [13], in 
this note we consider orthogonalities which are standard in inner product 
and normed spaces. To some extent our results are less general than those 
in the above papers since the standard orthogonality is weaker than 
lattice theoretic orthogonality. On the other hand, some of our theorems 
apply to more general vector spaces than the above and furthermore we 
have obtained results for a more general class of functionals which we 
call orthogonally monotone functionals. Finally, we use our results to 
solve a nonlinear functional equation and give an application for the 
solution. 

An orthogonality vector space is a real vector space X with dim X^.2 
on which there is defined a relation x_]_y such that 

(01) 0_L*, xj_0 for all xeXy 

(02) if x_[_y and x, y^O then x, y are linearly independent, 
(03) if x±y then ouc±py for all a9peR9 

(04) if B is a two-dimensional subspace of X, then for every Ojéx e B, 
there exists Ojéy e B such that x±_y and x+y J_x— y. 

It is easily seen that any real vector space of dimension ^ 2 is an orthog­
onality vector space if we define 0J_x, *_i_0 for all x and if x, y5^0 then 
xA_y iff x, y are linearly independent. It is also clear that an inner product 
space is an orthogonality vector space under the standard orthogonality 
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relation. Furthermore, any normed space is an orthogonality vector space 
under the James [8] orthogonality relation. 

Let (X, _[_) be an orthogonality vector space. A functional ƒ :X->R is 
hemicontinuous iff at—>oc implies f(y.ix)-+f(u.x) for all xe X. A functional 
f:X-+R is orthogonally additive iff f(x+y)=f(x)+f(y) whenever xj_y. 
An inner product <•, • > on X is compatible when x j_y iff (x9 y) =0. 

THEOREM 1. Let X be an orthogonality vector space. If there exists 
an f:X-+R which is even, orthogonally additive, hemicontinuous and not 
identically 0 then there is a compatible inner product (•, •) on J . In fact, 
(x9 y) = i[f(x+y)—f(x— y)] and the corresponding norm satisfies \\x\\2= 
f(x) or ||A:||2= -f(x)for all x e X. 

COROLLARY. Let X be an orthogonality vector space and let ƒ : X->R 
be an orthogonally additive, hemicontinuous functional. Then either (I) f is 
linear or (2) there is a linear functional f2 and a compatible inner product 
with corresponding norm || • || such that f(x)=\\x\\2+f2(x) or ƒ(*)= 
-\\x\\2+f2(x)forallxeX. 

If X is a normed space (dim X^.2) in the sequel we shall use James' 
definition of orthogonality [8]. The following corollary generalizes some of 
Sundaresan's work [15]. 

COROLLARY. Let X be a real normed space, dim X^2, and letf:X-+R 
be orthogonally additive and hemicontinuous. Then either (I) f is linear, 
or (2) X is an inner product space and there is a linear functional f2 and 
ceR such that f(x)=c\\x\\2+f2(x) for allxeX. 

Since a linear functional is automatically hemicontinuous, hemi-
continuity is no restriction on linear functional. Thus ƒ and f2 in the 
above corollary need not be norm continuous. Our next corollary shows 
that in an inner product space a bounded orthogonally additive functional 
is norm continuous and gives a generalization of the Riesz representation 
theorem. 

COROLLARY. Let X be an inner product space, dim X^.2, and let 
f:X-+R be orthogonally additive and satisfy |/(#)|^M||;*;|| for all x e X. 
Then f is a continuous linear functional and hence if X is a Hubert space 
there exists x0e X such thatf(x)=(x, x0)for all x e X. 

Let X be a real normed space. A functional ƒ : X->R is orthogonally 
increasing iff x_Ly implies f(x+y)^f(x); ƒ is radially increasing if a > l 
implies / (ax)^ f(x) for all xeX; and ƒ is spherically increasing if ||A:|| > \\y \\ 
implies f(x)^ f(y). Decreasing and monotone functional of these different 
types are defined in the obvious way. Clearly, spherically increasing implies 
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radially increasing and simple examples show that the converse need not 
hold. In a strictly convex (rotund) normed space, one can show that 
spherically increasing implies orthogonally increasing but examples can 
be given which show that this result need not hold in general. In a general 
normed space, orthogonally increasing need not imply spherically in­
creasing, although as we shall see, this is the case for certain types of 
normed spaces. An example of an orthogonally increasing functional is 
the following. Let g:R+->R, where i?+=nonnegative reals, be any non-
decreasing function and let f(x)=g(\\x\\). In Theorem 2 we characterize 
orthogonally increasing functional on a certain type of normed space and 
show that they are essentially of this form. 

Let I b e a continuous semi inner product (s.i.p.) space [6], Giles [6] 
has shown that a s.i.p. space is continuous iff the norm is Gâteaux dif-
ferentiable so most of the standard normed spaces are continuous s.i.p. 
spaces. 

LEMMA. In a continuous s.i.p. space X with dim X^.2, an orthogonally 
increasing functional f is radially increasing and also is norm continuous on 
a dense subset of X. Furthermore if f is hemicontinuous at O^xe X then f 
is norm continuous at x. 

We say that a normed space is orthogonally accessible (o.a.) if whenever 
HjlOIMI there exists A^ l and xi9 i=l, 2, • • • , n(x,y) such that Xx±_xx, 
^*+2i=î xi:-Lxj>j==2> 3, • • • , n, and J=Ax+2?=i •**• We can show that 
a large class of normed spaces are o.a. For example, if the two-dimensional 
cross-sections of the unit sphere satisfy a Lipschitz condition then the 
normed space is o.a. In particular an inner product space is o.a. 

THEOREM 2. Let X be an o.a. continuous s.i.p. space with dim X^.2 
and let f\X->R be orthogonally increasing. Then f is spherically increasing 
and there exist a countable number of spheres sl9 s2, * * • such that f is norm 
continuous at w iffw ^ U st. Furthermore\ there is a nondecr easing function 
g:R+->R such thatf(w)=g(\\w\\)for allw$[J s{. 

COROLLARY. Let X be an o.a. continuous s.i.p. space with dim X^.2 
and let f.X->R+ be orthogonally additive, (a) If X is not an inner product 
space then f =0. (b) If X is an inner product space then there is a c e R+ 
such that f(x)=c\\x\\2 for all x e X. 

COROLLARY. Let ( •, • ) and ( •, • )x be inner products on a real vector 
space X. If xj^y implies x ±_x y then there is a c>0 such that (u, v\= 
c(u, v) for all u,v e X. 

Let I b e a real inner product space with dim X^.2. We have already 
seen that the only solutions to the functional Qquationf(x)+f(y)=f(x+y) 
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whenever (x, y)=0, f(x)^0 for all x e X, are functions of the form 
/(x)=c| |x | |2 , c^O. Theorem 2 can be used to solve other functional 
equations. For example, letf-.X-^R be the functional f(x)=(a +\\x\\2)-1 

where a is a fixed positive number. If we define 

w(a, x,y) = (2a + ||x||2 + \\y\\*)-*[(a + \\y\\*)x + (a + \\x\\*)y] 

then it is straightforward to verify that f satisfies the condi t ions: f ix^O 
for all x e X, f1(x)+f1(y)=f1[w(a,x,y)] whenever (x9y)=—a. Our 
next theorem shows that these conditions characterize f up to a constant. 

THEOREM 3. A functional f:X->R+ satisfies f(x)+f(y)=f[w(a,x,y)] 
whenever (x,y)=—a ifff(x)=af(0)(a+\\x\\2)~1. 

As a corollary to this theorem we can obtain an important special 
case of a result due to Gleason [7]. Let H be a Hubert space and let 
P(H) denote the set of orthogonal projections on H. A state is a map 
m:P(tf)-*[0, 1] satisfying m ( / ) = l , m ( 2 £ 1 P , ) = ^ i m ( P , ) if the P/s 
are mutually orthogonal and the first sum is in the strong operator topol­
ogy. We denote the projection onto the one-dimensional subspace gener­
ated by a vector (/>^0 by P^. 

COROLLARY. Let H be a real separable Hubert space of dimension ^ 3 
and let m be a state satisfying m(P^o)=l where ||</>0|| = 1. Then m(P)= 
(P^^forallPePiH). 
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