A PRODUCT FORMULA FOR AN ARF-KERVAIRE INVARIANT

BY EDGAR H. BROWN, JR.¹

Communicated April 15, 1974

In [1] we introduced an Arf-Kervaire type of invariant $\sigma(M) \in Z_8 = Z/8Z$ defined for closed compact, even-dimensional manifolds M having a certain kind of orientation (see below). In this announcement we give a product formula for σ . Our results are applicable to Poincaré duality spaces, but for simplicity we give them for smooth manifolds. A special case of our formula was given in [2].

Let v^m be the map

$$v^m = \prod v_i : BO_k \to \prod_{2i>m} K(Z_2, i),$$

where $v_i \in H^i(BO_k)$ is the *i*th Wu class. Let BO_k^m be the fibration over BO_k induced by v^m from the contractible fibration. Let ζ_k be the universal k-plane bundle over BO_k , and let $\zeta_k^m = p^*\zeta_k$, where $p:BO_k^m \to BO_k$ is the projection. The Whitney sum map, $\zeta_k \times \zeta_l \to \zeta_{k+l}$, lifts to a map $\mu: \zeta_k^m \times \zeta_l^m \to \zeta_{k+l}^m$.

If M is an m-manifold, a Wu orientation of M is a bundle map $V: v \rightarrow \zeta_k^m$, where v is the normal bundle of $M \subset R^{m+k}$. (Every manifold has a Wu orientation.) If U and V are Wu orientations on M and N, $M \times N$ has a product orientation $U \times V$ defined in the obvious way. (For a detailed account of these ideas see [2].) Hereafter, manifold means a compact, closed, smooth manifold with a Wu orientation. $M \times N$ denotes the product manifold with the product orientation. The definition of σ given in [1] is applicable to M, with its Wu orientation, if dim M=2n. Let $\sigma(M)=0$ if dim M=2n+1. The definition of σ in [1] depended on a choice $\lambda_n: \pi_{2n+k}(T(\zeta_k^{2n}) \wedge K(Z_2, n)) \rightarrow Z_4$. Choose such λ_n 's for each n (such that $\lambda_n(\alpha_n)=2$ in the notation of [1]). (λ_{2n} can and should be chosen so that $\sigma(M)=\operatorname{index}(M)\operatorname{mod} 8$ if M is an oriented (in the usual sense) 4n-manifold.) Since we killed v_{n+1} to form BO_k^n , S^n has a nontrivial Wu orientation. Let S^n denote S^n with this orientation. It turns out that

AMS (MOS) subject classifications (1970). Primary 57A25, 57D65.

¹ The author was supported by NSF grant GP-38920X and a Science Research Council of Britain Fellowship while carrying out this research.

 $\sigma(\bar{S}^n \times M) \in \{0, 4\}$. Let $\sigma^n(M) \in Z_2$, n > 0, be defined by $4\sigma^n(M) = \sigma(\bar{S}^n \times M)$, where $4: Z_2 \rightarrow Z_8$ is the inclusion.

THEOREM 1.1. The maps $\mu: \zeta_k^m \times \zeta_l^n \to \zeta_{k+l}^{m+n}$ can be chosen so that the following formulas hold:

$$\sigma(M \times N) = \sigma(M)\sigma(N) + \sum_{n} 4(\sigma^{n}(M)\sigma^{n}(N)),$$

$$\sigma^{n}(M \times N) = \sigma(M)\sigma^{n}(N) + \sigma^{n}(M)\sigma(N).$$

REMARK. $\sigma^n(M)=0$ for $n>\dim M$ or $n+\dim M$ odd. In the above formula, $\sigma(M)\sigma^n(N)$ means $(\sigma(M)\bmod 2)\sigma^n(N)$. In [1] it was shown that $\sigma(M)=$ Euler characteristic of M modulo 2.

Theorem 1.2. If $m = \dim M$, m-n is even and $v_{(m-n)/2}(M) = 0$, then $\sigma^n(M) = 0$; $\sigma^n(\bar{S}^n) = 1$ $(v_0 = 1)$; $\sigma(\bar{S}^n \times \bar{S}^n) = 4$; $\sigma^n(\bar{S}^n \times RP^{2m}) = 1$.

A somewhat more amusing way of writing Theorem 1.1 is as follows: Let $A=Z_8[a_n]$, $n=1, 2, \cdots$, modulo the relations $2a_n=a_na_m=0$, $n\neq m$, $a_n^2=4$. Let $\sum (M)=\sigma(M)+\sum \sigma^n(M)a_n$.

Theorem 1.3.
$$\sum (M \times N) = \sum (M) \sum (N)$$
.

BIBLIOGRAPHY

- 1. E. H. Brown, Jr., Generalizations of the Kervaire invariant, Ann. of Math. (2) 95 (1972), 368-383. MR 45 #2719.
- 2. W. Browder, The Kervaire invariant, products and Poincaré transversality, Topology 12 (1973), 145-157.

Department of Mathematics, Brandeis University, Waltham, Massachusetts 02154