A SEPARABLE SOMEWHAT REFLEXIVE BANACH SPACE WITH NONSEPARABLE DUAL

ROBERT C. JAMES¹

Communicated by Jacob Feldman, November 18, 1973

ABSTRACT. An example is given of a separable Banach space X whose dual is not separable, but each infinite-dimensional subspace of X contains an infinite-dimensional subspace isomorphic to Hilbert space. Thus X contains no subspace isomorphic to c_0 or l_1 , X is somewhat reflexive, and no nonreflexive subspace has an unconditional basis.

It has been conjectured that every infinite-dimensional Banach space has an infinite-dimensional subspace that is either reflexive or isomorphic to c_0 or to l_1 [9, p. 165]. A counterexample would also be an example of a space that has no infinite-dimensional subspace with an unconditional basis [6, Theorem 2, p. 521]. It is known that there is a nonreflexive Banach space J with no subspace isomorphic to c_0 or to l_1 [6, pp. 523–527], but J^{**} is separable. Each of the following is a necessary and sufficient condition for a separable Banach space X to contain a subspace isomorphic to l_1 ; separability is not needed for conditions (i) and (ii) (see [5, Theorem 2.1, p. 13] and [10, p. 475]).

- (i) $L_1[0, 1]$ is isomorphic to a subspace of X^* .
- (ii) $C[0, 1]^*$ is isomorphic to a subspace of X^* .
- (iii) X^* has a subspace isomorphic to $l_1(\Gamma)$ for some uncountable Γ .

A natural and well-known conjecture in view of the preceding is that a Banach space has a subspace isomorphic to l_1 if the space is separable and its dual is not separable (e.g., see [1, §9, p. 243], [2, §5.4, p. 174], and the last paragraph of [11]). It will be shown that this conjecture is false. The counterexample \tilde{X} has the property that each infinite-dimensional subspace has an infinite-dimensional subspace isomorphic to Hilbert space. Thus \tilde{X} is also a counterexample to the conjecture that each separable somewhat-reflexive space has a separable dual (see [3, Problem 3, p. 191] and [8, Remark IV.2, p. 86]). Also, neither c_0 nor l_1 has an infinite-dimensional subspace isomorphic to Hilbert space, so no nonreflexive subspace has an unconditional basis [6, Theorem 2, p. 521]. It has been

AMS (MOS) subject classifications (1970). Primary 46B10.

¹ Supported in part by NSF Grant GP-28578.

shown by J. Lindenstrauss and C. Stegall that X is a counterexample for several other conjectures. They will present these results in a later paper, as well as giving another example of a separable space with nonseparable dual that has no subspace isomorphic to l_1 (this space has a subspace isomorphic to c_0).

The counterexample is intimately related to the space J mentioned above, e.g., many complemented subpsaces are isometric to J. This follows from the fact that, if $x=\{x_i\} \in J$, then

$$||x|| = \sup \left\{ \left[\sum_{i=1}^{n-1} (x_{p(i+1)} - x_{p(i)})^2 \right]^{1/2} : 1 \le p(1) < \dots < p(n), n \ge 1 \right\},$$

but if x is written as $\{\xi_i\}$, where $\xi_i = x_i - x_{i+1}$ and $x = \sum_{i=1}^{\infty} \xi_i e_i$ with e_n the sequence for which $x_i = 1$ if $i \le n$ and $x_i = 0$ if i > n, then

$$||x|| = \sup \left\{ \left[\sum_{j=1}^{n-1} \left(\sum_{i=p(j)}^{p(j+1)-1} \xi_i \right)^2 \right]^{1/2} : 1 \le p(1) < \dots < p(n), n \ge 1 \right\}.$$

To describe the counterexample, first choose a set Ω of cardinality c, each of whose members can be thought of as an infinite subset of the positive integers or as a nested sequence of intervals obtained as follows. Associate 1=b(1, 1) with the interval [0, 1], then 2=b(2, 1) with $[0, \frac{1}{3}]$ and 3=b(2, 2) with $[\frac{2}{3}, 1]$, and in general for each positive integer n use the integers from 2^{n-1} to 2^n-1 , or $\{b(n,i):1\leq i\leq 2^{n-1}\}$, to label the 2^{n-1} intervals remaining at the nth stage of the process customarily used to describe the Cantor set. Now let each number t in the Cantor set determine a member of Ω , namely, the set of all integers associated with intervals containing t. By a segment we shall mean a finite increasing sequence (possibly empty) of consecutive members of some set $\mathscr{A} \in \Omega$. If $\mathscr{A} \neq \mathscr{B}$ and \mathcal{A} and \mathcal{B} are in Ω , then $\mathcal{A} \cap \mathcal{B}$ is a nonempty initial segment of both \mathcal{A} and \mathcal{B} . A branch point of order k for Ω is one of the integers $\{b(k, i):$ $1 \le i \le 2^{k-1}$ that is the kth term of some member of Ω . A branch of order k (or a k-branch) is an infinite increasing sequence of consecutive members of some set $\mathcal{A} \in \Omega$ whose first member is a branch point of order k. For each sequence $x = \{x_i\}$ of real numbers with finite support, let

$$||x|| = \sup \left\{ \left[\sum_{n} \left(\sum_{i \in A(n)} x \right)^{2} \right]^{1/2} \right\},$$

where the sup is over all finite sets $\{A(n): 1 \le n \le p\}$ of pairwise disjoint segments. Let \tilde{X} be the completion with respect to this norm of the normed linear space X of all such sequences. Then \tilde{X} is a separable Banach space.

For each $\mathscr{A} \in \Omega$, define a linear functional $f_{\mathscr{A}}$ on X by letting $f_{\mathscr{A}}(x) = \sum_{i \in \mathscr{A}} x_i$ if $x \in X$, and extending to \widetilde{X} by use of continuity. Then $||f_{\mathscr{A}}|| = 1$.

Also, if $m \in \mathcal{A} - \mathcal{B}$, $n \in \mathcal{B} - \mathcal{A}$, and x is the sequence $\{x_i\}$ with $x_m = 1$, $x_n = -1$ and $x_i = 0$ otherwise, then $(f_{\mathcal{A}} - f_{\mathcal{B}})(x) = 2$ and $||x|| = 2^{1/2}$. Thus $||f_{\mathcal{A}} - f_{\mathcal{B}}|| \ge 2^{1/2}$ and \tilde{X}^* is not separable.

THEOREM. If $\theta > \sqrt{2}$, then each infinite-dimensional subspace of \tilde{X} contains an infinite-dimensional subspace H for which there is an inner-product norm $\| \| \|$ such that

$$||x|| \le ||x|| \le \theta ||x|| \quad \text{if } x \in H.$$

PROOF. It is sufficient to prove the theorem for X. Let Y be an infinite-dimensional subspace of X and let Y^k be the subspace of Y whose members are zero at each of the finite set of branch points with order less than k. Then Y^k has finite codimension as a subspace of Y. For each X in X, let

$$[x]_k = \sup \left\{ \left[\sum_{n} \left(\sum_{i \in B(n)} x_i \right)^2 \right]^{1/2} \right\},$$

where the sup is over all sets $\{B(n)\}\$ of pairwise disjoint k-branches. Let

$$\omega = \lim_{k \to \infty} \inf \{ [x]_k : x \in Y^k \text{ and } ||x|| = 1 \}.$$

It will be shown that $\omega=0$. Suppose $\omega>0$. For $\varepsilon>0$, choose K so that

(1)
$$\inf\{[x]_k^2: x \in Y^k \text{ and } ||x|| = 1\} > \omega^2 - \varepsilon \quad \text{if } k \ge K.$$

Choose an increasing sequence of integers $\{m(k)\}$ with m(1) = K, and then a sequence $\{y^k\}$ in X such that, for each k, $||y^k|| = 1$, y^k has nonzero terms only at branch points with orders in the interval [m(k), m(k+1)), and

$$[y^k]_{m(k)}^2 < \omega^2 + \varepsilon.$$

It will be shown that a contradiction is obtained if ε is sufficiently small. Let $y^k = \{y_i^k\}$. Since $[y^k]_K^2 > \omega^2 - \varepsilon$ and $y^k \in Y^{m(k)}$, there are 2^{K-1} branch points of order m(k), which will be denoted by $\{b(k, p_i^k): 1 \le i \le 2^{K-1}\}$ rather than using $b(m(k), p_i^k)$, and 2^{K-1} branches $\{B(k, p_i^k): 1 \le i \le 2^{K-1}\}$ of order m(k) starting at these branch points, such that

(3)
$$\sum_{i} \left(\sum_{j \in B(k, x_i^k)} y_j^k \right)^2 > \omega^2 - \varepsilon.$$

Now for each i, k and κ with $i \le 2^{K-1}$ and $k < \kappa$, let $\sigma(k, \kappa; i)$ be j if there exists $j \le 2^{K-1}$ such that $b(k, p_i^k)$ and $b(\kappa, p_j^k)$ are on the same K-branch. Then $\sigma(k, \kappa; i)$ is strictly increasing as a function of i and determines a one-to-one mapping of a subset of $\{p_i^k: i \le 2^{K-1}\}$ onto a subset of $\{p_i^k: i \le 2^{K-1}\}$. Choose a sequence of positive integers I_1 so that if k and κ are in I_1 and $k < \kappa$, then $\sigma(k, \kappa; i) = \sigma(k; i)$ is independent of κ for each i.

Then choose a subsequence I_2 of I_1 so that if $k \in I_2$ then $\sigma(k; i) = \sigma(i)$ is independent of k for each i. Now, $\sigma[\sigma(i)] = \sigma(i) = i$ and, for each $i \le 2^{K-1}$, either i is in the domain of σ and there is a K-branch that contains all $b(k, p_i^k)$ for $k \in I_2$, or i is not in the domain of σ and no K-branch that contains $b(k, p_i^k)$ for some $k \in I_2$ can contain any $b(\kappa, p_i^k)$ for $\kappa \ne k$ and $\kappa \in I_2$.

Now choose a subsequence I_3 of I_2 such that, for each i in the domain of σ and any two members k and κ of I_3 ,

$$\left|\sum_{i\in R}y_i^k-\sum_{i\in R}y_i^k\right|<2^{-K/2}\varepsilon,$$

where B is the K-branch containing all $b(k, p_i^k)$ for $k \in I_3$. For a λ to be chosen later, let $\{\mu(j): 1 \le j \le \lambda\}$ be any λ consecutive members of I_3 and, for any K-branch B, consider

(5)
$$\left[\sum_{i \in B} \left(\sum_{j=1}^{\lambda} (-1)^{j} y_{i}^{\mu(j)} \right) \right]^{2} = \left[\sum_{j=1}^{\lambda} (-1)^{j} \left(\sum_{i \in B} y_{i}^{\mu(j)} \right) \right]^{2}.$$

For each $\mu(j)$, let $\sum_{i \in B} y_i^{\mu(j)}$ be denoted by $\rho_B^{\mu(j)}$ or $\Delta_B^{\mu(j)}$ accordingly as B contains one of the branch points $\{b[\mu(j), p_i^{\mu(j)}]\}$ or B does not contain any such branch point. Then either there exists $\iota \leq 2^{K-1}$ and $\kappa > 0$ such that B contains $\{b(\mu(j), p_i^{\mu(j)}): j \leq \kappa\}$ and B contains no other $b(\mu(j), p_i^{\mu(j)})$ for $\kappa < j \leq \lambda$ and $i \leq 2^{K-1}$, or else B contains at most one of $\{b[\mu(j), p_i^{\mu(j)}]: 1 \leq j \leq \lambda, i \leq 2^{K-1}\}$. For any real numbers $\{a_i\}$,

(6)
$$\left(\sum_{1}^{n} a_{i}\right)^{2} \leqq \sum_{1}^{n} 2^{i} a_{i}^{2}.$$

Therefore it follows from (4) that the expression (5) is not greater than

(7)
$$2(\rho_B^{\mu})^2 + 4\left(\left[\frac{\kappa}{2}\right]2^{-K/2}\varepsilon\right)^2 + \sum_{i=1}^{\lambda}\varepsilon_i 2^{\lambda} (\Delta_B^{\mu(i)})^2,$$

where $\mu \in \{\mu(j): j \leq \lambda\}$ (except that the first term in (7) may be missing), κ is the largest integer such that $\kappa \leq \lambda$ and B contains $b(\mu(j), p_{\iota}^{\mu(j)})$ for some ι and for all $j \leq \kappa$, and each ε_j is 0 or 1. Note that if we sum terms of type $(\Delta_{B(n)}^{\mu(j)})^2$ over any 2^{K-1} pairwise disjoint K-branches B(n), then it follows from (2) and (3) that this sum is not greater than 2ε ; also, there are then at most 2^{K-1} terms of the type of the first term in (7), so these can contribute to $[y^{\mu(j)}]_{m[\mu(j)]}^2$ for at most 2^{K-1} values of j. Therefore the sum of (5) or (7) over any 2^{K-1} pairwise disjoint K-branches is not greater than

$$2\cdot 2^{K-1}(\omega^2+\varepsilon) + 4[\lambda/2]\varepsilon^2 + \lambda\cdot 2^{\lambda}(2\varepsilon) \leqq 2^K\omega^2 + \varepsilon(2^K+\lambda\cdot 2^{\lambda+1}) + 2\lambda\varepsilon^2.$$

Since $\|\sum_{j=1}^{\lambda} (-1)^j y^{\mu(j)}\|^2 \ge \lambda$, this contradicts (1) if

$$2^K \omega^2 + \varepsilon (2^K + \lambda \cdot 2^{\lambda+1}) + 2\lambda \varepsilon^2 < \lambda(\omega^2 - \varepsilon).$$

This inequality can be satisfied by choosing $\lambda > 2^K$ and then choosing ε small enough.

This concludes the proof that $\omega=0$. Since $\omega=0$, we can let ε be a positive number and choose an increasing sequence of integers $\{n(k)\}$ and a sequence $\{y^k\}$ in X, such that, for each k, $\|y^k\|=1$, y^k has nonzero terms only at branch points with orders in the interval (n(k), n(k+1)), and

$$[y^k]_{n(k)}^2 < 2^{-k}\varepsilon^2.$$

Let $\{a_i\}$ be a finite sequence of real numbers with $\sum a_i^2 > 0$. Then $\|\sum a_i y^i\|^2 \ge \sum a_i^2$. Choose a finite set $\{A(n): 1 \le n \le p\}$ of pairwise disjoint segments such that

$$\left\|\sum_{i \in A(n)} a_i y^i\right\|^2 = \sum_{n} \left(\sum_{i \in A(n)} \sum_{j} a_j y_i^j\right)^2.$$

If A is any of these segments, then A is the union of an initial and a terminal segment, each of which contains a part of the piece of a branch between branch points of order n(j) and branch points of order n(j+1) for some j, and several interior segments, each of which has the property that there is a j such that the segment contains all of the piece of a branch between branch points of order n(j) and branch points of order n(j+1). A sum $\sum_j a_j y_i^j$ over those i in an initial segment or a sum over those i in a terminal segment contributes only to the norm of the corresponding $a_j y^j$, while a sum over an interior segment contributes to $[a_j y^j]_{n(j)}$ only. Now we can use the fact that

$$(a + b + c)^2 \le (2 + \varepsilon)(a^2 + b^2) + (1 + 2/\varepsilon)c^2$$

for any real numbers a, b and c, and then (6) and (8), to obtain

$$\begin{split} \left\| \sum_{j} a_{j} y^{j} \right\|^{2} & \leq (2 + \varepsilon) \sum_{j} a_{j}^{2} + \left(1 + \frac{2}{\varepsilon} \right) \sum_{j} 2^{j} a_{j}^{2} [y^{j}]_{n(j)}^{2} \\ & < (2 + \varepsilon) \sum_{j} a_{j}^{2} + (2\varepsilon + \varepsilon^{2}) \sum_{j} a_{j}^{2} = (2 + 3\varepsilon + \varepsilon^{2}) \sum_{j} a_{j}^{2}. \end{split}$$

Since ε was arbitrary, for any $\theta > \sqrt{2}$ there is an infinite sequence $\{y^k\}$ of members of X such that, for all sequences $\{a_i\}$ of real numbers,

$$\left(\sum_{1}^{\infty} a_i^2\right)^{1/2} \leq \left\|\sum_{1}^{\infty} a_i y^i\right\| \leq \theta \left(\sum_{1}^{\infty} a_i^2\right)^{1/2}.$$

Erratum added in Proof. The sequences $\{m(k)\}$ and $\{y^k\}$ should be chosen simultaneously so that each y^k is in Y and the branches $\{B(k, p_i^k): 1 \le i \le 2^{K-1}\}$ are pieces of pairwise disjoint K-branches; $\{\mu(j): 1 \le j \le \lambda\}$ should not be consecutive members of I_3 , but chosen so that, for each branch point b of order K,

$$\sup\left\{\left[\sum_{i\in B}y_i^{\mu(j)}\right]^2\right\}<\sup\left\{\left[\sum_{i\in B}y_i^{\mu(1)}\right]^2\right\}+2^{1-K}\epsilon,$$

where $1 \le j \le \lambda$ and B is any K-branch containing b. In the first term of (7), ρ_B^{μ} should be replaced by the sum of the absolute values of two such terms; in the next two inequalities, $2^K(\omega^2 + \epsilon)$ can now be replaced by $8\omega^2 + 16\epsilon$ and λ need not depend on K.

REFERENCES

- 1. S. Banach, Théorie des opérations linéaires, Monografie Mat., PWN, Warsaw, 1932.
- 2. C. Bessaga and A. Pelczyński, A generalization of results of R. C. James concerning absolute bases in Banach spaces, Studia Math. 17 (1958), 165-174. MR 22 #5874.
- 3. W. J. Davis and I. Singer, Boundedly complete M-bases and complemented subspaces in Banach spaces, Trans. Amer. Math. Soc. 175 (1973), 187-194.
- 4. J. Hagler, Some more Banach spaces which contain l^1 , Studia Math. 46 (1973), 35-42.
- 5. ——, Embeddings of L^1 spaces into conjugate Banach spaces, Ph.D. thesis (U.C.B.), 1972.
- 6. R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518-527. MR 12, 616.
- 7. ———, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542-550. MR 30 #4139.
- 8. W. B. Johnson and H. P. Rosenthal, On w*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77-92.
- 9. J. Lindenstrauss, Some aspects of the theory of Banach spaces, Advances in Math. 5 (1970), 159-180. MR 43 #5288.
- 10. C. Stegall, Banach spaces whose duals contain $l_1(\Gamma)$ with applications to the study of dual $L_1(\mu)$ spaces, Trans. Amer. Math. Soc. 176 (1973), 463-477.
- 11. ——, The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc. (to appear).

DEPARTMENT OF MATHEMATICS, CLAREMONT GRADUATE SCHOOL, CLAREMONT, CALIFORNIA 91711