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1. Introduction. A circuit I' is a triangulation of the one-dimensional
sphere S. It shall have as its set of vertices I'\=Z,={0, 1, - -+, k—1},
and as its set of one-simplices I'y={0;=(j—1,j)|j=1,2,-+,k}. A
coloring of I' is a zero-dimensional cochain ¢® € C/(T', Z,0Z,) whose
coboundary is ‘“nowhere zero”, i.e. 6c°(0;)#0 for all o;€T';. A set K
of colorings of T' is realizable as a set of admissible colorings if there is a
triangulated two-dimensional disk D with boundary I' such that the
restriction homomorphism

j#:C(D,Z, @ Zy) - C(T, Z, © Z,)

(induced by the inclusion j:I'— D) takes the colorings of D onto K.
Let (k) be the minimum cardinality of a set K which is realizable as a
set of admissible colorings.
REMARK 1. ¢(k)=0 if and only if the four color conjecture is false.
The conjecture of Albertson and Wilf [1]. w(k)=3-2*fork=3,4,---.
Comment 1. Since 3 - 2* is the number of colorings of any disk D
with no interior vertices and k vertices in I'y= D,, we conclude 3 - 2=y (k).
Comment 2. 1t is not known whether the four color conjecture implies
the Albertson-Wilf conjecture for k>6. (It does for k=3,4,5 and 6
1)

In [1], Albertson and Wilf announce:
THEOREM 1. If the four color conjecture holds then
p(k) Z @DF,_1 = C((1 + /5)[2)*
where F is the kth Fibonacci number.

By generalizing the notion of a set of admissible colorings of I' to
the notion of a complete set of colorings of I', one can prove by induction
onk:

THEOREM 2. If the four color conjecture holds then
p(k) > 4 - 3%/ if k is even,
> 836112 ifk is odd.
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2. Coboundaries of colorings. Let D be a triangulated two-dimensional
disk with boundary I'. Since D is connected, H(D, Z,®Z)~Z,®Z,.
Hence there are exactly four colorings corresponding to each nowhere
zero one-dimensional cobounding cocycle. All of the sets of colorings that
we consider will contain all four colorings with a given coboundary if the
set contains any one of them. Thus we can consider the sets of coboundaries
of colorings as easily as the sets of colorings.

The disk D is contractible so H(D, Z,®Z,)~0. Hence the group of
cocycles Z(D, Z,®Z,) is equal to the group of cobounding cocycles
B\(D, Z,®Z,). [H(I',Z,®Z;)~Z,®Z,. In this case the cobounding
cocycles are characterized by the sum of all values being zero.]

Notation. Z,®»Z,={0, e;, e,, eg} with the obvious addition.

If z is a nowhere zero cocycle on D and 7% is a two-simplex with faces
«, f and y, then z(«)+z(8)+2z(y)=0. Hence z assigns the three values
e;, e; and ey to the faces «, § and y of 72 Let us suppose that z(f)=e;.
We may hold the value e, fixed and interchange the values e; and e, on
« and y. This change will propagate along a Z, cocycle which contains
either no one-simplexes from I'; or exactly two one-simplexes from I';.

REMARK 2. Let z be a nowhere zero cocycle on D and e; a fixed value
in Z,®Z,. For each o, in I'; with z(o;)#e;, there is a uniquely determined
o €Ty and z' a nowhere zero cocycle on D such that:

@) j' ).
(if) For every a € D,, z'(a)=¢; if and only if z(«)=e;.

(iii) For every ¢, € I';

Z'(0) = z(o) + ¢; ifl=}j,j,
= z(0y) otherwise.

The pairing 0,40 is called a planar change diagram for j#(z) and e;.
[j#(z) € Z\(T, Z,Z,).] It satisfies:

@) If o;<>0;, then neither z(g;)=e; nor z(o;)=e,;. Furthermore if
2(0;) #e, then o; belongs to a pair.

(ii) If o;4>0; and o0, then ¢, and o, lie on the same arc between
o; and oy,

Let z be a nowhere zero cobounding cocycle on I' and let P be a planar
change diagram for z and e;. With each set of pairs of P we can associate
a nowhere zero cobounding cocycle z’ on I'. This association is called the
action of P on z. If z is in some set L of cocycles and z’ € L for all sets of
pairs of P then we say L is closed under the action of P.

DErFINITION. A complete set K of colorings of I' corresponds to a set
0K of nowhere zero cobounding cocycles with the properties:

(i) K is invariant under the action of the six automorphisms »:Z,®
Zy—>Z,DZ,.
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(i) For each z € 6K and e, there is a planar change diagram P so that
0K is closed under the action of P.

3. Induced sets. A nondegenerate simplicial map f:E—F induces
a homomorphism: f#: B\(F, Z,®Z,)—~B'(E, Z,®Z,), which preserves the
property of being nowhere zero. In general, however, complete sets of
colorings on circuits are not preserved. [Let f:I'—I' be a two-fold
covering.]

4. Potted trees. A potted tree is a contractible simplicial complex
with no more than one two-dimensional simplex. A circuit I" is properly
mapped to a potted tree T if f:I'—T is a nondegenerate simplicial map
such that for each « € T3, f~'(x) has exactly one or exactly two elements
depending upon whether « is the face of a two simplex or not.

RemARk 3. If T' is properly mapped to the potted tree T then T,
has k/2 or (k+3)/2 elements. The set L of all colorings of T has n(k)
elements and f#(L) is a complete set of colorings of I' of cardinality n(k)
where

n(k) = 4 - 3%/2 if k is even,
=8 -3®V/2 jf kis odd.

Comment 3. n(k)=2-n(k—1) [equality when k is odd]; n(k)=
3 n(k—2).

A set K of colorings of I' is realizable as induced by a potted tree if
there exists a proper map f: I'—T such that K=f#(L).

5. OQOutline of the proof of Theorem 2. From a circuit I', we can form
a circuit I'V by deleting the open star of the vertex 1 and by inserting a
one-simplex (0, 2). We can also form a circuit I'” by performing the same
deletion and identifying the vertices 0 and 2. Since every nowhere zero
cobounding cocycle z on I' induces either a cocycle z' on I'V or a cocycle
z" on I', a complete set of colorings K on I' induces complete sets K’
and K" on I and T', respectively.

We prove by induction on the number k of vertices of I', that K has
fewer than n(k) elements only if K is empty. This follows from two in-
equalities. First the number of elements in K” is less than or equal to one
third the number of elements in K. Secondly, if K” is empty then the num-
ber of elements in K’ is less than or equal to half the number of elements
in K. In essentially the same way we can prove that if K has exactly n(k)
elements then K can be realized as induced by a potted tree.
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