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1. Introduction. Throughout the paper B is a real separable Banach 
space with norm || • ||, and all measures on B are assumed to be defined 
on the Borel subsets of B. We denote the topological dual of B by B*. 

A measure fx on B is called a mean zero Gaussian measure if every 
continuous linear function ƒ on B has a mean zero Gaussian distribution 
with variance \B [f{x)f /x(dx). The bilinear function T defined on B* by 

Af, g) = f f(x)g(x) tfdx) (ƒ, g G £*) 

is called the covariance function of ju. It is well known that a mean zero 
Gaussian measure on B is uniquely determined by its covariance function. 

However, a mean zero Gaussian measure fi on B is also determined 
by a unique subspace H^ of B which has a Hubert space structure. The 
norm on H^ will be denoted by || • ||M and it is known that the B norm 
|| • || is weaker than || • ||M on H^. In fact, || • || is a measurable 
norm on H^ in the sense of [3]. Since || • || is weaker than || • Ĥ  it follows 
that JB* can be linearly embedded into the dual of H^ call it H%, and 
identifying H^ with //* in the usual way we have B*^Hfi^B. Then by 
the basic result in [3] the measure JU is the extension of the canonical 
normal distribution on H^ to B. We describe this relationship by saying 
fx is generated by H^. For details on these matters as well as additional 
references see [3] and [4]. 

2. The basic inequality. The norm || • || on B is twice directionally 
differentiate on B—{0} if for x, y e B, x+ty 7*0, we have 

(2.1) (d/dt) \\x + ty\\ = D(x + ty){y) 
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where D :B— (0}-^i?* is measurable from the Borel subsets of B generated 
by the norm topology to the Borel subsets of B* generated by the weak-
star topology, and 

(2.2) (d2/dt2) \\x + ty\\ = Dl+ty(y, y) 

where Dl is a bounded bilinear form on BxB. We call Dl the second 
directional derivative of the norm, and without loss of generality we can 
assume Dl is a symmetric bilinear form. That is, if Tx is a bilinear form 
which satisfies (2.2) then Ax(y, z )= [Tx(y, z)+Tx(z, y)]/2 also satisfies 
(2.2) and A^ is symmetric. Hence in all that follows we assume Dl is a 
symmetric bilinear form. Of course, if the norm is actually twice Fréchet 
differentiable on B with second derivative at x given by Ax, then it is well 
known that A^is a symmetric bilinear form on BxB, and in this case Dl 
would be equal to A^ since symmetric bilinear forms are uniquely deter
mined on the diagonal of BxB. 

If Dl(y, y) is continuous in x (x^O) and for all r > 0 and x,he B such 
that \\x\\^r and \\h\\^r/2 we have 

(2.3) \Dl+h(h, h) - D%(h, h)\ ^ Cr \\h\\*+« 

for some fixed a > 0 and some constant Cr we say the second directional 
derivative is Lip (a) away from zero. 

We now can state our main result. 

THEOREM 2.1. Let B denote a real separable Banach space with norm 
|| • ||. Let || • || be twice directionally differentiable on B with the second 
derivative Dl being Lip (a) away from zero for some a > 0 and such that 
supiia-n^xllZ ÎI < oo.Let Xl9 X2, • • -be independentB-valuedrandom variables 
such that for some (5>0 

(2.4) sup E \\Xk\\
2+ö < co, EXk = 0 (k = 1, 2, • • •) 

7c 

and having common covariance function T(f g)=E(f(XJC)g(Xk)) (ƒ, g e 2?*). 
Then, if T is the covariance function of a mean zero Gaussian measure [i 
on B, it follows for t^.0 and any /3>0 that 

(2.5) P ( 1 K 1 + "/ + J H 1 ^ t ) s M*- 11*11 ^ t - P) + 0(n~min(a'*)/2) 
Ml yjn II / 

where the bounding constant is uniform in t7^.2fi. 

The proof of Theorem 2.1 uses a method which is due to Trotter [7]. 
The application of Trotter's method in this setting depends on a number 
of important relationships between H„ and B as well as some of the 
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nontrivial properties of Gaussian measures on B. The details of the proof 
are lengthy and will be presented in [6]. 

3. Applications of the basic inequality. Using the inequality of 
Theorem 2.1 we can obtain the central limit theorem and the law of the 
iterated logarithm for a sequence of B-valued random variables. 

THEOREM 3.1. Let B and {Xk} satisfy the conditions in Theorem 2.1, 
and assume [i is a Gaussian measure on B with covariance function T. 
Then, if jbtn denotes the measure induced on B by (A^H-* • t+Xn)l-s/n, 
we have limw jun=ju, in the sense of weak convergence. 

The proof of Theorem 3.1 is not difficult and the main idea is to use 
(2.5) to prove that for each e > 0 there is a finite dimensional subspace 
E of B such that 

(3.1) f*n(E
£) > l - e (n £ 1). 

Here Ee is the e neighborhood of E in B. Since the finite dimensional 
distributions of the sequence {/A,n} converge to those of /bt, (3.1) is then 
sufficient for the conclusion of Theorem 3.1. 

We now turn to the law of the iterated logarithm. LLn denotes log log n 
if n^.3 and 1 for n=l9 2. 

THEOREM 3.2. Let B and {Xk} satisfy the conditions in Theorem 2.1, 
and assume /u, is a Gaussian measure on B with covariance function T. 
If Kis the unit ball of the Hubert space H^ which generates ft, then 

(3.2) p(lim P 1 + ' ' ' +Jn -K\\ = 0) = 1 
\ » l (2nLLn)m I / 

and 

where C({an}) denotes the cluster set of the sequence {an}. 

It is known that K is a compact subset of B; thus (3.2) implies that with 
probability one the sequence {(Ar

1+* • •+Ar
n)/(2# LLn^^ is conditionally 

compact in B. 
The proofs of (3.2) and (3.3) rest heavily on the inequality (2.5) and also 

on some of the nontrivial properties of Gaussian measures on B. The 
details will be given in [6]. 

Strassen's functional form of the law of the iterated logarithm for 
B-valued random variables can also be proved in this setting using (2.5) 
and the techniques developed in [5] where B was assumed to be a real 
separable Hubert space. 
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4. Some spaces with smooth norm. Here we provide some examples 
of Banach spaces to which the above results apply. (5, 2 , m) denotes a 
measure space and m is a positive measure on (S, 2). 

THEOREM 4.1. If p^.2 and if for ^ e L ^ ^ m ) we define ||#|| = 
Us\x(s)\pm(ds)}1/p, then the norm || • || has two directional derivatives and 
the second derivative is Lip (a) away from zero with a = l for p=2 or p 3^3 
and K=p—2for 2< / ?<3 . Furthermore, supM=1 | |DJJ||:g2(p--l). 

The results of Theorem 4.1 are suggested by those in [1], but do not 
seem to be immediate corollaries of [1|. Their proof, however, is rather 
straightforward. Furthermore, the derivatives in Theorem 4.1 are actually 
Fréchet derivatives. 

Using Theorem 4.1 and assuming (S9 2 , m) is a cr-finite measure space 
we see that the Lv spaces (2^p< oo) satisfy the conditions used above. 
Thus the central limit theorem and the law of the iterated logarithm are 
valid in these spaces. A central limit theorem for random variables with 
values in an Lp space (2^p< oo) was previously known and appears in 
[2], but the log log law for non-Gaussian random variables is new for 
p>2. 
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