AN INEQUALITY FOR THE DISTRIBUTION OF A SUM OF CERTAIN BANACH SPACE VALUED RANDOM VARIABLES

BY J. KUELBS¹

Communicated by Jacob Feldman, September 29, 1973

1. Introduction. Throughout the paper B is a real separable Banach space with norm $\|\cdot\|$, and all measures on B are assumed to be defined on the Borel subsets of B. We denote the topological dual of B by B^* .

A measure μ on *B* is called a mean zero Gaussian measure if every continuous linear function *f* on *B* has a mean zero Gaussian distribution with variance $\int_{B} [f(x)]^2 \mu(dx)$. The bilinear function *T* defined on *B*^{*} by

$$T(f, g) = \int_B f(x)g(x)\,\mu(dx) \qquad (f, g \in B^*)$$

is called the covariance function of μ . It is well known that a mean zero Gaussian measure on B is uniquely determined by its covariance function.

However, a mean zero Gaussian measure μ on *B* is also determined by a unique subspace H_{μ} of *B* which has a Hilbert space structure. The norm on H_{μ} will be denoted by $\|\cdot\|_{\mu}$ and it is known that the *B* norm $\|\cdot\|$ is weaker than $\|\cdot\|_{\mu}$ on H_{μ} . In fact, $\|\cdot\|$ is a measurable norm on H_{μ} in the sense of [3]. Since $\|\cdot\|$ is weaker than $\|\cdot\|_{\mu}$ it follows that B^* can be linearly embedded into the dual of H_{μ} , call it H_{μ}^* , and identifying H_{μ} with H_{μ}^* in the usual way we have $B^* \subseteq H_{\mu} \subseteq B$. Then by the basic result in [3] the measure μ is the extension of the canonical normal distribution on H_{μ} to *B*. We describe this relationship by saying μ is generated by H_{μ} . For details on these matters as well as additional references see [3] and [4].

2. The basic inequality. The norm $\|\cdot\|$ on B is twice directionally differentiable on $B - \{0\}$ if for $x, y \in B, x+ty \neq 0$, we have

(2.1)
$$(d/dt) ||x + ty|| = D(x + ty)(y)$$

Copyright @ American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 60B05, 60B10, 60F10; Secondary 28A40.

Key words and phrases. Measurable norm, Gaussian measure, law of the iterated logarithm, central limit theorem, differentiable norm.

¹ Supported in part by NSF Grant GP 18759.

where $D: B - \{0\} \rightarrow B^*$ is measurable from the Borel subsets of B generated by the norm topology to the Borel subsets of B^* generated by the weakstar topology, and

(2.2)
$$(d^2/dt^2) \|x + ty\| = D_{x+ty}^2(y, y)$$

where D_x^2 is a bounded bilinear form on $B \times B$. We call D_x^2 the second directional derivative of the norm, and without loss of generality we can assume D_x^2 is a symmetric bilinear form. That is, if T_x is a bilinear form which satisfies (2.2) then $\Lambda_x(y, z) = [T_x(y, z) + T_x(z, y)]/2$ also satisfies (2.2) and Λ_x is symmetric. Hence in all that follows we assume D_x^2 is a symmetric bilinear form. Of course, if the norm is actually twice Fréchet differentiable on B with second derivative at x given by Λ_x , then it is well known that Λ_x is a symmetric bilinear form on $B \times B$, and in this case D_x^2 would be equal to Λ_x since symmetric bilinear forms are uniquely determined on the diagonal of $B \times B$.

If $D_x^2(y, y)$ is continuous in $x \ (x \neq 0)$ and for all r > 0 and $x, h \in B$ such that $||x|| \ge r$ and $||h|| \le r/2$ we have

(2.3)
$$|D_{x+h}^2(h,h) - D_x^2(h,h)| \leq C_r ||h||^{2+a}$$

for some fixed $\alpha > 0$ and some constant C_r we say the second directional derivative is Lip(α) away from zero.

We now can state our main result.

THEOREM 2.1. Let B denote a real separable Banach space with norm $\|\cdot\|$. Let $\|\cdot\|$ be twice directionally differentiable on B with the second derivative D_x^2 being Lip(α) away from zero for some $\alpha > 0$ and such that $\sup_{\|x\|=1} \|D_x^2\| < \infty$. Let X_1, X_2, \cdots be independent B-valued random variables such that for some $\delta > 0$

(2.4)
$$\sup_{k} E \|X_{k}\|^{2+\delta} < \infty, \quad EX_{k} = 0 \quad (k = 1, 2, \cdots)$$

and having common covariance function $T(f, g) = E(f(X_k)g(X_k))$ $(f, g \in B^*)$. Then, if T is the covariance function of a mean zero Gaussian measure μ on B, it follows for $t \ge 0$ and any $\beta > 0$ that

(2.5)
$$P\left(\left\|\frac{X_1 + \dots + X_n}{\sqrt{n}}\right\| \ge t\right) \le 2\mu(x: \|x\| \ge t - \beta) + O(n^{-\min(\alpha, \delta)/2})$$

where the bounding constant is uniform in $t \ge 2\beta$.

The proof of Theorem 2.1 uses a method which is due to Trotter [7]. The application of Trotter's method in this setting depends on a number of important relationships between H_{μ} and B as well as some of the

nontrivial properties of Gaussian measures on B. The details of the proof are lengthy and will be presented in [6].

3. Applications of the basic inequality. Using the inequality of Theorem 2.1 we can obtain the central limit theorem and the law of the iterated logarithm for a sequence of *B*-valued random variables.

THEOREM 3.1. Let B and $\{X_k\}$ satisfy the conditions in Theorem 2.1, and assume μ is a Gaussian measure on B with covariance function T. Then, if μ_n denotes the measure induced on B by $(X_1 + \cdots + X_n)/\sqrt{n}$, we have $\lim_n \mu_n = \mu$ in the sense of weak convergence.

The proof of Theorem 3.1 is not difficult and the main idea is to use (2.5) to prove that for each $\varepsilon > 0$ there is a finite dimensional subspace E of B such that

(3.1)
$$\mu_n(E^{\epsilon}) > 1 - \epsilon \qquad (n \ge 1).$$

Here E^{ε} is the ε neighborhood of E in B. Since the finite dimensional distributions of the sequence $\{\mu_n\}$ converge to those of μ , (3.1) is then sufficient for the conclusion of Theorem 3.1.

We now turn to the law of the iterated logarithm. *LLn* denotes $\log \log n$ if $n \ge 3$ and 1 for n=1, 2.

THEOREM 3.2. Let B and $\{X_k\}$ satisfy the conditions in Theorem 2.1, and assume μ is a Gaussian measure on B with covariance function T. If K is the unit ball of the Hilbert space H_{μ} which generates μ , then

(3.2)
$$P\left(\lim_{n} \left\| \frac{X_1 + \dots + X_n}{(2n \ LLn)^{1/2}} - K \right\| = 0 \right) = 1$$

and

(3.3)
$$P\left(C\left(\left\{\frac{X_1 + \dots + X_n}{(2n \ LLn)^{1/2}}\right\}\right) = K\right) = 1$$

where $C(\{a_n\})$ denotes the cluster set of the sequence $\{a_n\}$.

It is known that K is a compact subset of B; thus (3.2) implies that with probability one the sequence $\{(X_1 + \cdots + X_n)/(2n \ LLn)^{1/2}\}$ is conditionally compact in B.

The proofs of (3.2) and (3.3) rest heavily on the inequality (2.5) and also on some of the nontrivial properties of Gaussian measures on *B*. The details will be given in [6].

Strassen's functional form of the law of the iterated logarithm for B-valued random variables can also be proved in this setting using (2.5) and the techniques developed in [5] where B was assumed to be a real separable Hilbert space.

4. Some spaces with smooth norm. Here we provide some examples of Banach spaces to which the above results apply. (S, Σ, m) denotes a measure space and m is a positive measure on (S, Σ) .

THEOREM 4.1. If $p \ge 2$ and if for $x \in L^p(S, \Sigma, m)$ we define $||x|| = \{\int_S |x(s)|^p m(ds)\}^{1/p}$, then the norm $|| \cdot ||$ has two directional derivatives and the second derivative is Lip(α) away from zero with $\alpha = 1$ for p = 2 or $p \ge 3$ and $\alpha = p - 2$ for $2 . Furthermore, <math>\sup_{||x||=1} ||D_{\alpha}^2|| \le 2(p-1)$.

The results of Theorem 4.1 are suggested by those in [1], but do not seem to be immediate corollaries of [1]. Their proof, however, is rather straightforward. Furthermore, the derivatives in Theorem 4.1 are actually Fréchet derivatives.

Using Theorem 4.1 and assuming (S, Σ, m) is a σ -finite measure space we see that the L^p spaces $(2 \le p < \infty)$ satisfy the conditions used above. Thus the central limit theorem and the law of the iterated logarithm are valid in these spaces. A central limit theorem for random variables with values in an L^p space $(2 \le p < \infty)$ was previously known and appears in [2], but the log log law for non-Gaussian random variables is new for p>2.

BIBLIOGRAPHY

1. R. Bonic and J. Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877–898. MR 33 #6647.

2. R. Fortet and E. Mourier, Les fonctions aléatoires comme éléments aléatoires dans les espace de Banach, Studia Math. 15 (1955), 62-79. MR 19, 1202.

3. L. Gross, Abstract Wiener measure and infinite dimensional potential theory, Lectures in Modern Analysis and Applications, II, Lecture Notes in Math., vol. 140, Springer, Berlin, 1970, pp. 84–116. MR 42 #457.

4. J. Kuelbs, Some results for probability measures on linear topological vector spaces with an application to Strassen's log log law, J. Functional Analysis 14 (1973), 28-43.

5. _____, Berry-Essen estimates in Hilbert space and an application to the law of the iterated logarithm, Ann. Probability (to appear).

6. _____, An inequality for the distribution of a sum of certain Banach space valued random variables, Studio Math. (to appear).

7. H. F. Trotter, An elementary proof of the central limit theorem, Arch. Math. 10 (1959), 226-234. MR 21 #7559.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706

552