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1. Introduction. In what follows let S*>(p)={x e i ^ + 1 | \x\ = p} and 
^ ^ ^ ^ ( ( p / ^ + ^ / ^ x ^ ^ / ^ + ^ / ^ c i S ^ + H l ) . Let M be a codi-
mension 1, closed minimal submanifold of *Sn+1(l) and C(M)={tx\0< 
t<l9xeM}. 

It is well known that C(M) is a minimal submanifold of Rn+2. An 
important question is whether C(M) minimizes area in jRn+2 with respect 
to its boundary M. With respect to this question the following results are 
known: 

(a) When n^5, Simons [4] has given a negative answer. 
(b) When M=SPtî), p^3, Bombieri-De Giorgi-Giusti [1] have given 

an affirmative answer. 
(c) When M=SPtQ and either p+q^.1 or p=q=3 Lawson [2], using a 

different approach from Bombieri-De Giorgi-Giusti, has given an af­
firmative answer. 

(d) Lawson has also proved that when n=6 or n=7 the set of minimal 
cones C(M), that minimize area in Rn+2 with respect to their boundary M9 

is finite up to diffeomorphisms. 
In this note we answer the question when M=S2)tq with p+q=6. 

2. Results. Using techniques related to those of Bombieri-De Giorgi-
Giusti, we were able to prove in [3] the following two theorems: 

THEOREM 1. If p+q=n and either 
(a) ri^il or 
(b) n—6 with \p—q\^A, 

then the cone C(*S,
3)#Ö) minimizes area in Rn+2 with respect to its boundary 

THEOREM 2. C(£1>5) and C(S5tl) do not minimize area in R8 with 
respect to their respective boundaries Slt5 and *S51. 
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Now let V be a C2 vector field in iÊn+2, having compact support not 
containing Sn+1(l) and let {cf>t} be its 1-parameter group of diffeomor-
phisms. We say that C(M) is stable if for any such vector field there is 
e>Q such that 

Area of </>t(C(M)) ^ Area of C(M) when \t\ < e. 

By an argument similar to one in Simons [4] one may prove that 
C(Slt5) and C(S5tl) are stable. 

So we have the following: 

THEOREM 3. Although C(SltB) and C(S51) are stable they do not 
minimize area in R8 with respect to their respective boundaries S15 and 
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