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ON THE MAXIMUM NTH DIAMETER 
BY B. VOLK 

Communicated by Shlomo Sternberg, September 12, 1973 

ABSTRACT. Herein is disproved, in some cases, a plausible 
conjecture on the maximum value of the Mh diameter of a closed 
bounded connected planar set of logarithmic capacity one. 

Introduction. Let N be a positive integer greater than one. Define 
the Mh diameter of a closed bounded connected planar set to be the 
largest geometric mean of the distances between any N points of the set. 
This notion is a generalization of the usual diameter—which is just the 
case 7V=2. Then, if the above set is of logarithmic capacity one, how big 
can the Mh diameter get ? 

Fix the set in question. Let dN denote the Mh diameter of the set. Then, 
as shown by M. Schiffer (in [4]), 

dN ^ 41/NN1/{N-1} for AT = 2, 3. 

This is the bound achieved only for the set consisting of the Mpronged 
slit forking at the origin and terminating at the Mh roots of four, or 
translations of the set. This set is a contender for the set with maximum 
Mh diameter, since the function of the form 0z_l_power series in (l/z) 
which maps the exterior of the unit disc onto the exterior of the set is 
(zN±_2±_z~N)1/N, whose coefficient of the z term is exactly one. 

Thus the following conjecture seems plausible : 
For all N9 dN^41/NN1,iN"1). Equality is achieved iff the set, T, consists 
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of N linear segments from the origin to the JVth roots of four, or transla
tions of the set. 

This diameter conjecture is, as mentioned above, true for N=2 and for 
7V=3. It was, however, stated by P. R. Garabedian and M. M. Schiffer 
(in [1]) that the conjecture is false for N=4. Here, it will be shown that the 
conjecture is in fact false for all N such that N is an even integer greater 
than two. The other cases, when N is an odd integer greater than three, 
remain open. 

Let 2 ' denote the class of functions 

G(z) = z J_ èi*-1 _L 62z~2 J_ • • • JL bnz~« _L • • • 

which are analytic and univalent for all z such that | z | > l . Let Q(z)= 
that inverse function of z~x{\ ±_zN)VN which is in 2 ' . Let 2 = a positive 
real number greater than one. Then (G. Pólya and G. Szegö in [3]) a little 
reflection shows that, for any function G(z) in £ ' , the function 

#(z) = 
41INX r ^ 10? JL l)2/iV (1 J- zN?,N\ 

1 Q \ ^ ~z j j 
is in 2 ' and omits the N points 

AVNI 

v 9/AT G{Xojk) with œN = 1, and k = 1, 2, 3, • • • , N. 

Hence, if DN denotes the largest possible value of the Nth diameter for 
any closed bounded connected planar set of logarithmic capacity one, 
then 

»N * L ^f/N I ! MM) - G(lœW(N -N) where / = 1. 

Hence if the conjecture be true then 

G(Xwj) - G(Aft)*) 
CD n 

3*k XCJÙ* — Àœk 
^(i±2X-N±k-2N)N-1. 

Now define the double sequence of complex numbers {CPtQ) to be the 
Grunsky coefficients of G(z) if 

- L o g = 2 , CP.QX y • 

Then on comparing both sides of (1), supposedly, 

IQ.iv-i -L Q.iv-2 _L Q.AT-3 _L • * • _L Qv-i.il = 2 — 2/N. 

The following lemma thus completes the disproof of the conjecture, for N 
an even integer greater than two. 
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LEMMA. \Clt2M-iA_C2t2M_2_\_' ' tA_C2M_ll\'>2—l/M for some function 
GM(z) and for M=2, 3, 4, • • • . 

PROOF. Let M> 1 be fixed. Let 

F(z) = z±_ a2z* JL • • • J_ anz» _L • • • 

be univalent for z such that | z | < l , and let 

J(z) = F-1/M(z-M) 

= z - M~xa2z
x-M J_ {\M~xa\ J_ iM~V2 - M~1a3)z1-2ilf J_ • • • . 

Then some Grunsky coefficients of J(z) are 

Ckt2M-k = C2M-k,k = P * " 1 ^ _L $kM~2al - M_ 1a3 

where /c = 1, 2, 3, • • • , M 
Therefore for J(z) 

(2) \C1.2M_1±Ci.*M_2±---±C2M_ltl\=(2-ll^ 
I \ 4M — 2 /I 

Now select F(z) to maximize the quantity 

3 M - 1 
(3) |a3 — OLÜ\\ where a 

4 M - 2 

over the set of functions with normalized power series which are univalent 
in the interior of the origin-centered unit disc. Then, as proven by G. M. 
Golusin (in [2]), 

|fl8 - 0La\\ = 1 J_ 2 exp(—2a/(l - a)) for a in (0, 1). 

This, in conjunction with (2) and (3), proves the Lemma and the result. 
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