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Introduction. The study of foliations on manifolds has a long history 
in mathematics, even though it did not emerge as a distinct field until the 
appearance in the 1940's of the work of Ehresmann and Reeb. Since that 
time, the subject has enjoyed a rapid development, and, at the moment, it 
is the focus of a great deal of research activity. 

The purpose of this article is to provide an introduction to the subject 
and present a picture of the field as it is currently evolving. 

The treatment will by no means be exhaustive. My original objective 
was merely to summarize some recent developments in the specialized 
study of codimension-one foliations on compact manifolds. However, 
somewhere in the writing I succumbed to the temptation to continue on to 
interesting, related topics. The end product is essentially a general survey 
of new results in the field with, of course, the customary bias for areas of 
personal interest to the author. 

Since such articles are not written for the specialist, I have spent some 
time in introducing and motivating the subject. However, this article 
need not be read linearly. §§ 1, 2, 3 and 5 fall into the category of "basic 
material." §§ 4, 8 and the combination 6-7 are essentially independent of 
each other. 

I would like to thank Bill Thurston and André Haefliger for making 
several valuable suggestions for improving the manuscript. 

An address delivered before the 78th Annual Meeting of the Society in Las Vegas, 
Nevada, on January 17, 1972 by invitation of the Committee to Select Hour Speakers 
for the Summer and Annual Meetings, under the title Foliations of compact manifolds', 
received by the editors May 7, 1973. 

AMS (MOS) subject classifications (1970). Primary 57D30. 
1 Work partially supported by NSF grant GP29697. 

Copyright ® American Mathematical Society 1974 

369 



370 H. B. LAWSON, JR. [May 

1. Definitions and general examples. A manifold is, roughly speaking, 
a space locally modelled on affine space; and a submanifold is a subset 
locally modelled on an affine subspace. In this spirit, a foliated manifold 
is a manifold modelled locally on an affine space decomposed into parallel 
affine subspaces. 

DEFINITION 1. By a p-dimensional, class Cr foliation of an m-dimen-
sional manifold M we mean a decomposition of M into a union of dis­
joint connected subsets {<&a}aeA, called the leaves of the foliation, with 
the following property: Every point in M has a neighborhood U and a 
system of local, class Cr coordinates x=(xx, • • • , xm)\ U-*Rm such that 
for each leaf oSPa, the components of J7 nj£?a are described by the equations 
xp+1=constant, • • • , xm=constant. 

FIGURE 1 

We shall denote such a foliation by ^r={^(x}aLGA' 
It will often be more natural to refer to the codimension q=m— p of 3F 

rather than to its dimension/?. 
Note that every leaf of fF is a /^-dimensional, embedded submanifold 

of M. The embedding, however, may not be proper; in fact, as we shall 
see, it is possible for a leaf to be dense. 

Local coordinates with the property mentioned in Definition 1 are said 
to be distinguished by the foliation. If x and y are two such coordinate 
systems defined in an open set J7<= M, then the functions giving the change 
of coordinates y^y^x1, • • •, xm) must satisfy the equations 

(1.1) Syjdxj = 0 for 1 £j ^ p < i ^ m 

in U. Hence, choosing a covering of M by distinguished local coordinates 
gives rise to a G-structure on M (cf. Chern [C]) where G^GL(m9 R) is 
the group of matrices with zeros in the lower left (m—p) xp block. That is, 
G is the subgroup of GL(m, R) which preserves the linear subspace 
Rv={(x\ • • • ,*» , ( ) , • • • , 0)}^Rm. One of the reasons that foliations 
interest people in geometry is that they constitute a class of structures on 
manifolds which is complicated enough to shed light on the general 
situation but has certain geometric aspects that make it tractable. 
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Foliations arise naturally in many ways in mathematics and it should be 
useful to examine some of the important cases. The first and simplest 
examples come from nonsingular differentiable mappings. 

A. Submersions. Let M and Q be manifolds of dimension m and 
q^m respectively, and let f\M-+Q be a submersion, that is, suppose that 
mnk(df)=q. It follows from the Implicit Function Theorem that ƒ induces 
a codimension-gr foliation on M where the leaves are defined to be the 
components of/_ 1(x) for x e Q. Differentiable fiber bundles are examples 
of this sort. 

Note that locally every foliation is defined by submersion. 
B. Bundles with discrete structure group. Let M-+VP be a differentiable 

fiber bundle with fiber Q. Recall that a bundle is defined by an open 
covering {Ua}aeA of P, diffeomorphisms K'.TT~1(U0)->U(XXQ, and transi­
tion functions gafi : Ua n Up->Diff(Q) such that ha o h~^\x, y)=(x, ga/j(x)(y)). 
If the transition functions are locally constant, the bundle is said to have 
discrete structure group. Note that under this assumption, the codimension-
q (</=dim Q) foliations of 7r~1(U0) given by the submersions 7r_1((7a)^ 
Ua x Q->Q fit together to give a foliation of M. 

Every such bundle can be constructed in the following way. Let 
9?:7r1(jP)-^Diff(ô) be a homomorphism and denote by P the universal 
covering space of P. Then TT^P) acts jointly on the product PxQ, and 
we define M=PxQl7T1(P). The action preserves the product structure, 
and so the product foliation of PxQ (arising from P x Q-+Q) projects to a 
foliation of M. This is the foliation we described above. Note that each 
leaf looks like a many-valued cross-section of the bundle M-^>?P. In 
fact, 7T restricted to any leaf is a covering map. To see this note that if J5? 
is the leaf corresponding to Px{x}<^PxQ, then JSP^P/T^ where Tx= 
{gE7r1(P):(p(g)(x)=x}. 

FIGURE 2 
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The simplest example of a bundle of this sort is the Möbius band, M= 
RxRjZ where Z is generated by the map f(x,y)=(x+l, —y). The lines 
y=constant project to a foliation of M by circles as in Figure 2. 
Note that the circles corresponding to y= c for c^O must go around the 
band twice before closing. 

The most common examples of bundles of this sort are flat vector 
bundles. In fact, any principal (/-bundle with a flat connection (cf. [KN]) 
is a bundle with discrete structure group. The vanishing of curvature is 
exactly the condition that the horizontal planes be tangent to a foliation. 

In a semilocal sense every foliation is a foliation of this sort. Specifically, 
the normal bundle to a leaf inherits a natural flat connection and corre­
sponding discrete structure group. The resulting foliation of the normal 
bundle is the "first order part" of the foliation in a neighborhood of the 
leaf. In particular, the holonomy of this flat connection is the linear part 
of the "holonomy" of the foliation along the leaf (an important concept 
due originally to Ehresmann, cf. §8). 

C. Group actions. Let G be a Lie group acting differentiably on a 
manifold M. If we assume the action is locally free, that is, for each x e M 
the isotropy subgroup Gx={g e G:g(x)=x} is discrete, then the orbits of 
G form a foliation of M. When G is not compact these foliations can be 
quite complicated. 

A simple case of this type arises when G is a subgroup of a Lie group 
G'—M, and the action is left multiplication. The leaves are then the left 
cosets of G in G'. If, for example, we let G=R be a noncompact 1-param­
eter subgroup of a torus (a line of irrational slope), then every leaf of the 
resulting foliation is dense. 

Related to this discussion is the notion in differential topology of the 
rank of a manifold. This is defined as the largest n such that there exists a 
locally free action of Rn on the manifold. (Alternatively, for compact 
manifolds, it is the maximum number of pointwise independent, com­
muting vector fields.) The determination of this invariant generally 
depends on a deep study of foliations. 

D. Differential equations. A foliation always appears as the family of 
solutions to some nonsingular system of differential equations. To study 
the foliation is to study the global behavior of the solutions. For instance a 
nonsingular system of ordinary differential equation, when reduced to 
first order, becomes a nonvanishing vector field. The local solutions (orbits 
of the local flow generated by the vector field) fit together to form a 1-
dimensional foliation. The study of the global aspects of this foliation go 
back to Poincaré. 

One can analogously consider ordinary differential equations in the 
complex case (where dependence on the variables is holomorphic). One 
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obtains nonsingular holomorphic vector fields and corresponding foliations 
by complex curves. The first approach to this subject from the point of 
view of foliations was made by Painlevé who considered the important 
equation: y'=R(x, y) where R is a rational function in y with coefficients 
holomorphic in x. An exposition of this work and later generalizations can 
be found in [R3]. 

While foliations are themselves solutions to differential equations of a 
particular sort, they also occur in the intermediate stages of solving more 
complicated systems, where the leaves appear as characteristic manifolds. 
(See, for example, [STG, p. 135].) They also appear in the famous study, 
made by Anosov, of the general structure of certain systems of ordinary 
differential equations. (See [ANO], [AR].) 

E. Transversal mappings. Within the general category of foliated 
manifolds there is a class of natural mappings. 

DEFINITION 2. Let M be a manifold with a codimension-gr, Cr foliation 
^F, and suppose f:N-^M is a mapping of class Cs, l^s^r, of a manifold 
N into M. Then ƒ is said to be transverse to IF if for all x e N, there exists 
a system of distinguished coordinates (x1, • • • , xm) a t / (x ) on M such that 
the map cp=(xm~Q+1 oƒ,•••, xm of) is a submersion in a neighborhood 
of x. 

The above condition is independent of the distinguished coordinates 
chosen at y=f(x). In fact, if ry(^) denotes the vectors in Ty(M) tangent 
to the foliation, and if ƒ* : Tx(N)->Ty(M) denotes the linear map on 
tangent vectors induced by ƒ, then the condition of transversality at x is 

t h a t : Ty(M) = T V ( J O + UTX{N). 

It follows immediately from the definitions that if/: N^~M is transverse 
to a foliation J ^ = { ^ a } a e A on M as above, then ƒ induces a class Cs foliation 
ƒ *J^ on N where the leaves are defined as the components of/_1(.J§?a) for 
OLE A. Note that codim(/*J r)=codim(J r) . 

In the special case that ƒ is a submersion, we can consider ƒ to be trans­
verse to the trivial foliation of M by points. The induced foliation is the 
one described in part A above. 

More generally, suppose ƒ : N ^ M is a submersion and !F is any folia­
tion of M. Then ƒ is transverse to & and Z * ^ is defined. Thus any codi-
mension-^ foliation of M can be lifted to codimension-ç foliations of 
manifolds which fiber over M. 

We shall say that a submanifold N of M is transverse to a foliation &> 
if the inclusion map i:Nc+M is transverse to &r. 

To simplify language in the subsequent discussion, we make the con­
vention that the word "smooth" means "of class C r" where r is an integer 
> 1 which is fixed in context. 
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2. Foliations of dimension one. If a manifold M admits a foliation of 
dimension one, then the tangents to the leaves form a differentiable field 
of line elements on M. Conversely, every smooth line field on M is tangent 
to a one-dimensional foliation. To see this, observe that in a neighborhood 
of any point there is a smooth, nonvanishing vector field V which generates 
the line field. The integral curves of V (forgetting the parameter) give the 
foliation in this neighborhood. For future reference, we state this fact 
explicitly. 

LEMMA 1. The one-dimensional C00-foliations of a manifold M are in a 
natural one-to-one correspondence with the set of C™ line fields on M. 

COROLLARY 1. Every open manifold {"open" means no component is 
compact) has a one-dimensional foliation. 

COROLLARY 2. A compact manifold has a one-dimensional foliation if 
and only if its Euler characteristic is zero. 

Thus, the only compact surfaces with foliations are the torus and the 
Klein bottle. However, on these surfaces there is a rich variety of possi­
bilities. There are the foliations of T2=R2/Z2 coming from families of 
parallel lines in R2 (cf. §1, C). More generally, if/: S^S1 is any orientation 
preserving diffeomorphism of the circle, we can consider the torus as a 
quotient T 2 = J R X 5 1 / Z where Z is generated by the diffeomorphism 
(t9 0)-Kf+l,ƒ(<?)). The foliation {Rx{6}}0eSi of RxS1 projects to a 
foliation of T2. (When ƒ is a rotation, we obtain the linear foliation above.) 
We can then modify this foliation by introducing a Reeb component at 
each fixed point of ƒ (cf. Figure 3 and §4 below). These constructions 

FIGURE 3 

produce essentially all foliations of T2 up to diffeomorphism. Thus, the 
study of these foliations is reduced to the study of Diff^S1). It turns out 
that there is a radical difference here between the differentiability classes 
r = l and r^.2 [DE]. This difference is reflected throughout the study of 
foliations. 

As we shall soon see, there is a major distinction between foliations of 
dimension 1 and those of higher dimension. It is basically the distinction 
between ordinary and partial differential equations. The one-dimensional 
case has inherently more structure and is more properly studied from the 
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viewpoint of dynamical systems (cf. [SM]). Nonetheless, the deep 
theorems in this special case often lead to important general results. This 
has been particularly true of the Poincaré-Bendixson theorem and the 
Seifert conjecture as we shall see in §8. 

3. Higher dimensional foliations; integrability criteria. Suppose that 
^={j§?a}a6^ is a foliation of dimension p>l on an m-manifold M. Then 
associated to F is a smooth field of p-planes tangent to the leaves, which 
we denote r(«^). Consequently, in order that a manifold admit a foliation 
of dimension p, it must first admit a continuous field ofp-planes (or, by 
duality, a field of (m— /?)-planes). This is, of course, a nontrivial topological 
requirement. For example, S5 admits no continuous 2-plane (or 3-plane) 
fields. 

However, one might ask whether this is the only obstruction to finding 
foliations. If we are given a smooth field of r-planes r on M, can we, in 
analogy with Lemma 1, find a foliation SF such that r=r(«^")? The 
answer in general is no. In order to solve the resulting system of partial 
differential equations, certain compatibility conditions (which result from 
the commutativity of second partial derivatives) must be satisfied. The 
condition can be stated as follows. Let $"(r) denote the set of vector fields 
V on M such that Vx e rx for all xeM. If for all K, We 2£(r) we also have 
the Lie bracket [V, W] e^(r), then T is called integrable. This is equiv­
alent to the condition that the ideal J(r) of exterior differential forms which 
vanish on r is closed under exterior differentiation. One of the classical 
theorems of analysis is the following. 

THEOREM 1. r is the field of tangent planes to a foliation if and only if 
it is integrable. 

This theorem is generally ascribed to Frobenius [F], although it has 
been pointed out by Milnor [M4] (and Frobenius, himself) that it can be 
found in the earlier work of A. Clebsch and F. Deahna. 

Observe that if J^ is a foliation of class Cr, then r(^") is of class Cr_1. 
Unfortunately, if r is an integrable plane field of class Cr_1, the associated 
foliation is, in general, only of class Cr_1. (When integrating one does not 
increase differentiability in the normal direction.) 

It is easy to see that most plane fields are not integrable. So if we are 
given an /--plane field r, the natural question (cf. Haefliger [H2]) is whether 
T can be deformed to an integrable one. That is, does there exist a con­
tinuous family of r-plane fields rt9 O^f^l , such that T0=T and r1=r(^r) 
for some foliation J^? The answer, as pointed out by Bott, is no. To see 
why we must consider the normal bundle v(^r)=rJ-(^r) of the foliation, 
which is defined as the bundle of cotangent vectors which vanish on r. 



376 H. B. LAWSON, JR. [May 

(Introducing a riemannian metric, v can be identified with the field of 
(m— /?)-planes perpendicular to r.) 

THEOREM 2 (BOTT [Bl]). Let v be the field of normal planes to a foliation 
of codimension-q on M, and denote by Font*(v)<^H*(M; R) the subring 
generated by the Pontryagin classes of v. Then 

(2.1) Pontfc(r) = 0 for k > 2q. 

Condition (2.1) depends only on the homotopy class of v (in fact, only 
on its stable equivalence class as an abstract bundle), and must therefore 
hold for any bundle which can be deformed to the normal bundle of a 
foliation. The condition is nontrivial. As Bott shows, complex projective 
«-space Pn(C), for n odd, admits a plane field of codimension 2. However, 
an argument using (2.1) and the ring structure of 7f*(Pn(C); R) shows 
that no such plane field can be integrable. 

The proof of Theorem 2 proceeds by constructing o n n connection 
which is flat along the leaves. Condition (2.1) then follows directly from 
the Chern-Weil homomorphism. 

A number of results similar to Theorem 2 have been proven. For 
example, Bott also has a version for the complex analytic case, with a 
resulting condition on Chern classes. Joel Pasternak [PI], [P2] has 
improved the vanishing criterion (2.1) to the range k>q for foliations 
with certain metric properties. (Roughly, one assumes the leaves are 
locally a constant distance apart.) As a corollary, Pasternak concludes 
that if an m-manifold M admits an almost-free action of a compact p-
dimensional Lie group, then the real Pontryagin classes o f M must vanish 
in dimensions greater then m—p. This result is surprisingly false for 
integral Pontryagin classes. 

Recently, Herbert Shulman [SH] has shown that there are secondary 
obstructions to integrability which are independent of Bott's primary ones. 
He proves that if v is the normal bundle to a foliation of codimension-q, 
then for all a, /?, y e Pont*(r) (real classesl) with deg(a • fi)>2q and 
deg(j8 • y)>2q, the Massey triple product (a, /?, y )=0 . 

In view of these results one might wonder whether there exist reasonable 
conditions sufficient to guarantee that a plane field is homotopic to a 
foliation. This problem will be discussed, at least for open manifolds, in §7. 

4. Foliations of codimension-one. It should be noted that none of the 
sundry versions of Theorem 2 apply to foliations of codimension-one. In 
fact, by generalizing the immersion theory of Hirsch and Smale, A. 
Phillips proved the following striking result. 

THEOREM 3 (PHILLIPS [PHI], [PH2]). On an open manifold every 
codimension-one plane field is homotopic to a smooth foliation. 
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Therefore, in analogy with Corollary 1 above, every open manifold 
admits a smooth, codimension-one foliation. For compact manifolds this 
is not true since a compact manifold admits a continuous codimension-
one plane field if and only if its Euler characteristic vanishes. (This rules 
out, for example, all even-dimensional spheres but says nothing about 
odd-dimensional manifolds.) The principal conjecture, made by Emery 
Thomas [TS1], is the following analogue of Corollary 2 above. 

CONJECTURE 1. A compact manifold admits a smooth, codimension-one 
foliation if and only if its Euler characteristic vanishes. 

As we shall see there is now much more evidence to support this con­
jecture than existed when it was first made. It is not unreasonable therefore 
to make the following stronger conjecture (cf. Theorem 3). 

CONJECTURE 2. On a compact manifold every codimension-one plane 
field is homotopic to a smooth foliation. 

The remainder of this section will be devoted to these two questions. 
In the above conjectures the foliations were asked to be differentiable 

but not necessarily analytic. This is for a good reason. 

THEOREM 4 (A. HAEFLIGER [HI]). A compact manifold with finite 
fundamental group has no real-analytic foliations of codimension-one. 

This was one of the earliest results on the question of existence of 
foliations. The proof, in outline, is as follows. Suppose M is simply-
connected with an analytic, codimension-one foliation. Let y^M be a 
closed curve transversal to the foliation. (See Lemma 4 below.) Then y is 
the boundary of a mapping/: D2-+M which by general position arguments 
can be assumed to be "Morse regular" with respect to the foliation. That 
is, at any point/? e D2 consider a system of distinguished local coordinates 
(x1, • • • , xn) where xw=constant defines the foliation. Then xn o f has 
nondegenerate (Morse-type) singular points. It can now be shown that 
the induced foliation (with singularities) on D2 contradicts analyticity. In 
particular, the nonanalytic phenomenon of "one-sided holonomy," 
pictured in Figure 4, must occur. 

FIGURE 4 
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Theorem 4 says nothing about C00 foliations, and indeed in 1944 (long 
before Haefliger's paper) G. Reeb had constructed a codimension-one ex­
foliation of S3 as follows. Consider the C00-foliation of the (x, j)-plane 
given by the lines x=c for \c\ ̂  1 together with the graphs of the functions 
y*=f(x)+c'9 — 1 < X < 1 and c'e R, where ƒ has the property that 
lim^i^!ƒ<k)(x)= oo for all k. 

FIGURE 5 

Consider now the foliation of the solid cylinder obtained by rotating 
the strip {(x, y) e R2 : — 1 ^ x ^ 1} about the j-axis in 3-space. This foliation 
is invariant by vertical translations, and so we can obtain a foliation of the 
solid torus where each noncompact leaf has the form of a snake eternally 
eating its tail. 

The 3-sphere can be decomposed as two solid tori joined along their 
common 2-torus boundary. Indeed, if one removes the solid torus of 
rotation from Rz=S3~{oo} (cf. Figure 5), what remains is homeomorphic 
to a solid torus minus an interior point. (Consider the vertical coordinate 
axis as the core circle.) Gluing together two copies of our foliated solid 
torus gives a Reeb foliation of the 3-sphere. 

Note that gluing together the two solid tori by different diffeomorphisms 
of T2 gives codimension-one foliations of all the 3-dimensional lens spaces. 
Actually much more is true. Combining this idea of Reeb with a paper 
written by J. Alexander in 1923 proves the following. 

THEOREM 5 (ALEXANDER, LICKORISH, NOVIKOV, REEB, AND ZEISCHANG). 

Every compact orientable ?>-manifold has a smooth codimension-one 
foliation. 
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Before entering a discussion of this theorem we shall make some useful 
general remarks. We begin by introducing the following important notion. 

DEFINITION 2. A compact manifold is said to have an Alexander 
decomposition if there exists a differentiable map F.M-+C such that: 

(i) The origin 0 e C is a regular value, i.e., there is a neighborhood of 
A=F~1(0) in which Fis a submersion. 

(ii) The map f=Fj\F\\M—A-+S1 is a submersion. 
The submanifold ^4=F_1(0) is called the axis of the decomposition. It is 
not difficult to see (cf. [M2]) that for e>0 sufficiently small, the (tubular) 
neighborhood T(A)=F~1({z:\z\<8}) of the axis is diffeomorphic to 
A x D2. In particular A has a trivial normal bundle. Furthermore, the map 
ƒ: M— A-+S1 is a fiber bundle whose fiber e ^=/ - 1 ( l ) is called the generator 
of the decomposition. One can check that for each 0, the closure of 
s/0=f~1(ei0) is a compact manifold with boundary ds/e*=A. 

FIGURE 6 

We can therefore think of Alexander decompositions as obtained by 
"spinning" the generator se about its boundary ds/=A (the axis). In fact, 
all manifolds with Alexander decompositions can be constructed as follows. 
Let se be a compact manifold with boundary ds/ and let d: s/->s/ be a 
diffeomorphism which is the identity in a neighborhood N(ds/) of ds/. 
The manifold M is then obtained from se x [0, 2TT] by first identifying 
(x, 0) with (d(x), 2TT) for xe s/9 and then for each x e ds/ identifying 
all the points (x, 0), 0^0^2TT. M has a natural smooth structure and an 
Alexander decomposition with function F defined as follows. Let cp:stf-+ 
jR+U{0} be a smooth function such that <p=l outside N(dsf) and <p(x) = 
distance^, ds/) near ds/ (where distance is defined with respect to some 
riemannian metric on s/). Then we set F(x, 6)=cp(x)et9. 

Two important examples of Alexander decompositions are the following. 



380 H. B. LAWSON, JR. [May 

EXAMPLE 4A. Let M=S2n+1={Ze Cn + 1 : |Z| = l} and let p(Z) be a 
polynomial such that Vp=(dpldZ0, • • • , dpldZn)^0 for Z^O. Then 
F=p\S2n+1 gives an Alexander decomposition of *S2n+1. It is straight­
forward to see that 0 is a regular value ofF. Therefore we need only check 
that ƒ = Fj\F\\S2n+1—A-^S1 is a submersion. When p is homogeneous 
of some degree v>0, this is easy. At any Z e S2n+1—A consider the curve 
t\-+euZ. ThQnf(euZ)=eivtf(Z) and so ƒ maps the velocity vector of this 
curve at t=0 to a nonzero tangent vector to S1 a t / (Z ) . Thus, ƒ is a sub­
mersion. In the general case we must appeal to a theorem of Milnor [M3]. 

EXAMPLE 4B. Let niE^S1 be a smooth, orientable fiber bundle with 
connected fiber J / 0 . Let a:S1-^E be a smooth cross-section and denote by 
T(a) a tubular neighborhood of oiS1) in E. Then * f = £ - T(a) is a manifold 
with boundary dê^S1 x Sn~2 where 7r\{ei6} X Sn~2=eid. We then construct 
a compact manifold M by gluing & to D2xSn~2 along their common 
boundary by a diffeomorphism which sends {el0} x Sn~2 to itself for each 6. 
An Alexander decomposition F: M—>C is given by 

F{x\ - | f fW» for * G ^ > 
w \<p(z>, for x = (z, x') e Z)2 x Sn~2, 

where cp:D2->R+ is a smooth function which = 1 in a neighborhood of 
zero and = l / | z | near dD2. In this case the generator stf is diffeomorphic 
to the fiber <s/0 with a disk removed, and the axis A is diffeomorphic to 
Sn~2. In fact A = { 0 } x S n - 2 c ^ x S n - 2 . 

The following is a sometimes useful observation. 

LEMMA 2. Le£ Mfc, A:=0, 1, be compact m-manifolds with Alexander 
decompositions having axes Ak and generators <s/k respectively. Then the 
connected sum M^MX has an Alexander decomposition with axis A0#A1 

and generator sé^séx {connected sum at the boundary). 

The proof is straightforward (cf. [DL]). 
The relevance of Alexander decompositions to foliations is given in the 

next proposition. We say that a codimension-one Cr-foliation of a manifold 
M is trivial at the boundary if each component of the boundary is a leaf 
and if the foliation extends to a Cr-collaring of M by defining the leaves 
in the collar dMx [0, 1] to be the components of dMx{t} for O r g ^ l . 
(See [Wl], [L].) 

PROPOSITION 1. Let M be a compact manifold with an Alexander 
decomposition F. If the manifold F'1^) x D2 has a smooth, codimension-one 
foliation which is trivial at the boundary, then M has a smooth, codimension-
one foliation. 
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PROOF. As above we set A=F~1(0) and choose e > 0 sufficiently small 
that: 

(i) r ^ 4 ) = F ~ H £ r W x 2 ) 2 , where D2
r={z:\z\^r}9 for 0 < r ^ 2 e . 

(ii) F is a submersion in T2e(A). 
We now consider a foliation JF of C—{0} defined as follows. Let F be a 
smooth vector field in C—{0} such that V= — 9/9r outside D^and F = 
9/90 inside Z>*, and let the foliation F correspond to the orbits of the flow. 
Observe now that the map F\M—A is transverse to F. In particular, 
F lifts F to a smooth codimension-one foliation of M— Te(A)° which is 
trivial at the boundary. By assumption we have a foliation of Te(A) which 

FIGURE 7 

is trivial at the boundary. Consequently, we may join the two to obtain a 
foliation of M. 

We are now in a position to discuss Theorem 5. The principal step in its 
proof is : 

ALEXANDER'S THEOREM [A]. Every compact orientable 3-manifold has 
an Alexander decomposition. 

The axis A of any such decomposition is a disjoint union of circles. 
Thus, A X D2 is a disjoint union of solid tori which, by Reeb's construction 
above, have codimension-one foliations which are trivial at the boundary. 
Applying Proposition 1 then proves Theorem 5. 

The case of nonorientable 3-manifolds is somewhat more complicated 
and has been done by John Wood. (See [Wl] for details.) 

THEOREM 5' (ALEXANDER, LICKORISH, ETC. AND WOOD). Every com­
pact 3-manifold has a smooth, codimension-one foliation. 
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Curiously, the relevance of Alexander's Theorem to foliations has been 
noticed only recently. Proofs of Theorem 5 using surgery methods have 
been given by Lickorish [LI], Novikov, and Zeischang. 

The first major use of Alexander decompositions was made when the 
geometry of isolated singularities of algebraic hypersurfaces was used to 
construct foliations of higher dimensional spheres. 

THEOREM 6 (LAWSON [L]). There exist smooth, codimension-one folia­
tions of S2^ for k=l, 2, 3, • • • . 

PROOF. We first consider the Alexander decomposition F of S5 given by 
setting F=p\S5 wherep is the polynomial 

(See Example 4A above.) The axis A =F~1(0) is the inverse image under the 
Hopf map 7T:S5-KP2(C) of the nonsingular algebraic curve defined by p 
in the complex projective plane P2(C). By a classical formula of algebraic 
geometry (genus=\(d— l)(d—2) where d= degree of/?) this curve must be 
a torus. Projecting this torus onto one of its factors, we get a submersion 
A-^S1 and, thus, a submersion AxD2->S1xD2. We may now lift the 
Reeb foliation of S1 x D2 to a codimension-one foliation of A x D2 which 
is trivial at the boundary. By Proposition 1 we then have a foliation of S5. 

Note. It has been pointed out by D. Tischler and A. Verjovsky that 
this foliation of S5 can be generalized as follows. Let i:S1xS1-+P2(C)bQ 
an embedding with homology degree m7*0. (That is, [/(51X*S1)]= 
mlP^C)] in H2(P

2(C); Z)^Z.) Let £ denote the restriction of the Hopf 
bundle to the complement of /(S1 x S1). It is straightforward to see that the 
Chern class of | is a torsion class of order m. Thus, f has a finite structure 
group, and the total space of f has a foliation given by a closed 1-form. 
The rest of the construction is as before. In the special case m=l , | ^ 
(P^Q—iiSP-xSP-ytxS1. When m=3 we get the foliation above. 

To get the result for higher dimensional spheres, we establish an induc­
tion procedure. We begin by considering the Alexander decomposition of 
£2n+i g j v e n by ^ e complex polynomial 

qn(Z) = Z2
0 + -- + Zl 

The axis An—S2n+1r\{qn=0} is diffeomorphic to the bundle of unit 
tangent vectors to the «-sphere. To see this write Z e S2n+1<=Cn+1 as 
Z=Z+/Fwhere|Z|2+|r|2=l.Then,/7(Z)=|A r |2-|7|2+2/<Z, 7), and so 
An={(X, Y)\\X\2=l, |F |2=4 and (Y, X)=0}. The difleomorphism can 
now be explicitly constructed. However, all we need observe for our 
purposes is that the map Tr:An-+Sn given by 7T(X, Y)=Xis a submersion. 
This is easy to check. 
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According to Proposition 1 the sphere S2n+1 has a foliation if there is a 
foliation of An x D2 (trivial at the boundary). Since there is a submersion 
7TXl:AnxD2~>SnxD2

9 it is sufficient to find a foliation of SnxD2. 
However, the following was pointed out to me by Alberto Verjovsky. 

LEMMA 3. SnxD2 has a smooth codimension-one foliation which is 
trivial at the boundary if and only if Sn+2 does. 

To see this note that 5w+2=5'nxD2Ui)n+1x*S'1 where the two pieces 
are joined along their boundary. If there is a foliation of SnxD2, we con­
struct a Reeb foliation of Dn+1xS1 and, putting them together, get a 
foliation of Sn+2. Conversely, suppose Sn+2 has a codimension-one folia­
tion. Then by Lemma 4 below, there is a circle S1(^Sn+2 embedded trans­
versely to the foliation. There is then a tubular neighborhood TiS1) of S1 

in 5W+2 and a diffeomorphism d: 7T(,S1)-*Z)n+1 X S1 which carries the folia­
tion of TiS1) to the natural foliation of Dn+1xS1 by Dn+1x{eie} for 
0^0^277. (See [Wl] for details.) We now modify the foliation in the inte­
rior of T(SX) by introducing a Reeb component. That is, we construct a new 
foliation of Dn+1 x S1 which agrees with the old one near the boundary 
and which contains a copy of Dn+1 x S1 with the Reeb foliation in its 
interior. This new foliation is carried to T(SX) by d. Removing the Reeb 

D n + 1 x 5 x 

FIGURE 8 

component gives us a foliation of Sn+2-Dn+1xS1^SnxD2 which is 
trivial at the boundary. 

We now proceed inductively as follows. 3 fol on »S5=>3 fol on Ss X D2=> 
3 fol on A3 x D2=>3 fol on 57=>3 fol on S5 X D2=> • • •. In general, we see 
that if there is a smooth codimension-one foliation of Sn, then there is a 
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smooth codimension-one foliation of S2"("-*)+*, for jfc=0, 1, 2, • • •. This 
completes the proof of Theorem 6. 

We now turn our attention to the general case of odd-dimensional 
spheres. To handle this we must strengthen the induction argument. Let 
us suppose that there exist smooth, codimension-one foliations of S2k+1 

for 2^k<n. The above arguments show that if n is odd, there is a codi­
mension-one foliation of *S2n+1. If « is even, the Alexander decomposition 
given by qn fails because the axis An fibers over an even-dimensional 
sphere. Hence, the key to doing the general case is to find an Alexander 
decomposition of 5 4 m + 1 for m^2, with axis which fibers over an odd-
dimensional sphere. This was achieved simultaneously and independently 
by A. Durfee [D] and I. Tamura [Tl]. While their methods were quite 
different, the results were remarkably similar. They both constructed 
Alexander decompositions of S4m+1, ra§:2, having as axis S2mxS2m"~1. 
Briefly, Durfee's argument is as follows. Consider the Alexander decom­
positions of £4W+1 coming from the polynomials 

2m 

p0(Z) = (Z0 + Zl)(Zl + Zl) + 2 Zl 
2ra 

Pl(z) = z\ + z\ + 2 A-
By resolving the singularity and using some results from his thesis, Durfee 
shows that the axis ^ 0 =^ 4 m + 1 n{^ 0 =0}^5 2 w x*S 2 w - 1 #2 4 m + 1 where 
S4 m + 1 is the Milnor exotic sphere. It is well known that the axis Ax= 
£4m+in{^ i =Q}^_24m+i ^ orientations are chosen properly). Therefore, 
taking connected sums of the Alexander decompositions (cf. Lemma 1) 
gives the result. It is interesting to note that while Tamura used methods 
purely from differential topology, he also needed to cancel a Milnor 
exotic sphere from the product in the same way. 

We can now complete the induction begun above. Suppose there are 
foliations of S2^1 for 2<^k<n. Then there are foliations of 5 2 M X i ) 2 

for 0^k<n. There is an Alexander decomposition of S2n+1 with axis A 
admitting a submersion A-^S2^1 (where 2k— \=n or n—l). Lifting the 
foliation of S^^xD2 to AxD2 and applying Proposition 1 gives a 
foliation of S2n+1. Since there is a foliation of S5, we get 

THEOREM 7 (DURFEE, TAMURA). Every odd-dimensional sphere admits a 
smooth codimension-one foliation. 

It has been remarked by Milnor that if S2W+1 has a codimension-one 
foliation, so does every exotic (2«+l)-sphere. (See [L, Corollary 6].) 

The natural question at this point is what can be said about other 
odd-dimensional manifolds. The first result in this direction was the 
following. 
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THEOREM 8 (N. A'CAMPO). Every compact simply-connected 5-manifold 
has a smooth codimension-one foliation. 

The proof goes roughly as follows. In [BA] Barden constructs a sequence 
{Mk}%L0 of compact simply-connected 5-manifolds, where M0=S2xSz, 
and shows that every other compact, simply-connected 5-manifold is a 
connected sum of a finite number of Mk

9s. A'Campo [AC] shows that each 
Mk for k^.1 has an Alexander decomposition of type 4B above. Hence, 
any connected sum of these has an Alexander decomposition with axis 
S3, and since there is a foliation of S3xD2, this connected sum has a 
codimension-one foliation. 

Suppose now that M=S2xSz#M' where M' has a codimension-one 
foliation F'. Then M is obtained from M' by removing a tubular neighbor­
hood «f of a smoothly embedded curve y:S1^M\ and sewing in a 
(foliated) copy of Ss x D2. If M' is simply-connected, we may assume y to 
be transverse to 3F' and then modify the foliation in M' — 2?~ to be trivial 
at the boundary, as we did in proving Proposition 1. This produces a 
codimension-one foliation of M. Applying this procedure inductively 
handles the remaining cases. 

We note that this result was obtained for simply-connected, spin 5-
manifolds also by H. Shulman. 

One is now led to consider (n — l)-connected (2rc+l)-manifolds. Using 
the geometry of algebraic hypersurface singularities and classification 
theorems, Durfee and Lawson [DL] proved the existence of foliations on 
a class of these which bound parallelizable manifolds. 

These results fairly well exhausted the theorems possible from known 
classification results, and some classification-free methods were needed. 
In particular it was natural to investigate the higher-dimensional versions 
óf Alexander's Theorem. An extensive study of this was made by E. H. 
Winkelnkemper [WI], and we mention the relevant aspects of his work 
here. 

WINKELNKEMPER'S THEOREM. Let M be a compact simply-connected 
manifold of dimension « > 5 . 7/ '«?É0mod4, then M has an Alexander 
decomposition. Ifn^O mod 4, M has an Alexander decomposition if and only 
if the signature of M is zero. Furthermore, the Alexander decompositions 
can always be chosen to have a simply-connected generator se where 
Hi(s£\ Z)—0for ƒ > [njl] and where the natural map H^s/; Z)->i/t.(Af ; Z) 
is*-an isomorphism for / < [njl]. 

This is a beautiful and quite powerful result. It essentially gives an 
inductive method for constructing manifolds, and it should prove to be a 
basic tool in differential topology. The application of this result to 
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foliations was made by Tamura who obtained independently some partial 
results of the above type [T3]. 

Suppose n=2k+l^.7. By Lemma 3 and Theorem 7, if Mn has an 
Alexander decomposition with axis Sn~2, then Mn has a codimension-one 
foliation. Unfortunately, we cannot make this requirement on the axis in 
general. (It cannot be done on SnxS2 for /*>3, for example.) However, 
when M2k+1 is (k— l)-connected, the generator se of the Alexander 
decomposition is a 2/:-disk with /c-handles attached. By attacking these 
handles one at a time with clever surgery techniques, Tamura [T4] 
succeeded in changing the Alexander decomposition into one with S2fc_1 

as axis. This gave the following very pretty generalization of Theorems 
5' and 8. 

THEOREM 9 (TAMURA). Every compact (k—l)-connected, (2/c+l)-
manifold has a smooth codimension-one foliation. 

I have learned that, using Winkelnkemper's method of proof, M. 
Freedman [FR] gave an independent proof of this theorem at about the 
same time as Tamura. 

We note incidentally, that these last methods apply only to the cases 
2A:+1>5. For dimensions 3 and 5 we still need the old proofs. 

Of course, this theorem immediately implies that there are foliations of 
a somewhat larger class of manifolds. 

COROLLARY 3. Any manifold which fibers over an (n-l)-connected, 
(2n + l)-manifold, for example, all the classical groups and their associated 
Stiefel manifolds, have smooth codimension-one foliations. 

The proof of Theorem 9 actually shows that every (n—l)-connected, 
(2n + iymanifold is obtained from a bundle over a circle by performing a 
surgery on a cross-section. (See Example 4B.) Actually, a much larger 
class of manifolds (but not all) can be constructed this way, and every 
such manifold has a codimension-one foliation. 

It is interesting to note at this point that by returning to polynomials in 
Cn+i we can construct large numbers of distinct foliations on («—1)-
connected (2«+l)-manifolds. Consider for example the Alexander decom­
positions on S3 given by 

p(Z0, Zt) = ZJ + Zf. 

When r and s are relatively prime, the axis is a torus knot of type (r, s)9 

and the generator is a compact, orientable surface of genus (r—1)0?—1) 
punctured at one point. By taking connected sums, we get an infinite 
family of interesting Alexander decompositions (and, therefore, foliations) 
of any compact, orientable 3-manifold. 
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The analogous remarks apply in higher dimensions where one considers 
the Brieskorn polynomials p(z)=z%+zl+ Yz\. For appropriate d, 
the axis is a sphere S2"-1 knotted in S2wf l . (See [L] for details.) 

At the moment Theorem 9 and its corollaries represent the state of our 
knowledge concerning Conjecture 1. However, one remark is in order 
here. Note that in the Winkelnkemper Theorem a requirement for a 
4A;-manifold to have an Alexander decomposition is that its signature be 
zero. This requirement is independent of the requirement that the Euler 
characteristic vanish. For example, P 2 ( C ) # P 2 ( 0 # ^ X S^ftS1 X S3 has 
signature 2 and Euler number 0. Thus we pose the following 

Problem 1. Does there exist a 4A>manifold of nonzero signature which 
admits a codimension-one foliation? 

An example of such an animal was constructed in [RI4], but an error 
has been found in the proof, so the question is still open. 

We turn our attention now to Conjecture 2. Most of the work on this 
problem has been done by John Wood [Wl]. To state his theorem we 
need the following definition. A codimension-one plane field r on a 
manifold M is said to be transversely orientable if there is a (nowhere 
zero) vector field V on M transverse to r , i.e., VP $ rP for all/? e M. 

THEOREM 10 (WOOD). Every transversely orientable 2-plane field on a 
compact 3-manifold is homotopic to a foliation. 

This theorem is impressive for two reasons. There are an infinite number 
of distinct homotopy classes of such 2-plane fields on a compact 3-mani­
fold. Furthermore, as one can check locally, most 2-plane fields cannot be 
C°-approximated by integrable ones. In fact, there are 2-plane fields which 
cannot lie within 90° of an integrable one. For example, let V be any 
nonvanishing, divergence-free vector on S3 (e.g. the Hopf field V(Z)=iZ 
for Z G S3c: C2). Then Fis not transverse to any codimension-one foliation. 
In general, V cannot be transverse to any compact surface 2 embedded 
in S3, for if cpt is the flow generated by V and if @+ is the component of 
5 3 - S having V as interior normal at 3 ^ + = S , then <p t(^+)g^+ for 
/ > 0 . Since cpt preserves volume this is impossible. However, by Novikov 
(see §8) every codimension-one foliation of Sz has a compact leaf. It 
follows that the 2-plane field T=V± cannot lie uniformly within 90° of 
the plane field to a foliation. 

In higher dimensions Wood has proved the following result [Wl]. 

THEOREM 11 (WOOD). Let M be a compact manifold with a transversely 
orientable, codimension-one foliation &*. If it is possible to find a family 
of closed curves transverse to 3F', which generate H^M; Z), then every trans­
versely orientable, codimension-one plane field is homotopic to a foliation. 

In particular this conclusion holds for all manifolds of the type M==NxS1
t 
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Combining Theorems 7 and 11 gives the following. 

COROLLARY. Let M be a compact manifold which fibers over an odd-
dimensional sphere. Then every transversely orientable, codimension-one 
plane field on M is homotopic to a foliation. 

There are also results for transversely unorientable plane fields. For 
details see [Wl] and [W2]. However, Wood's general problem is still open. 

Problem 2. Show that Conjecture 2 holds for any manifold which 
admits a codimension-one foliation. 

Note. Since the writing of this article Paul Schweitzer has succeeded 
in removing the homology condition from Wood's Theorem 11, obtaining, 
however, only C° foliations. Thurston then modified Schweitzer's pro­
cedure to produce C00 foliations. Thus, Problem 2 is solved in the trans­
versely orientable case. 

Appendix to §4. We conclude this section with two items of separate 
interest. 

It was mentioned above that the continuous, integrable plane fields on Sz 

are not C°-dense in the set of all plane fields. With our thoughts in this 
direction it is interesting to note that Rosenberg and Thurston [RT] have 
constructed a continuous integrable plane field on the 3-torus which cannot 
be approximated by an integrable plane field of class C2. (More recently, 
examples of integrable C1 fields not approximable by integrable C2 fields 
have been found.) 

We end by sketching the proof of the following useful fact (cf. [HI]). 

LEMMA 4. Let M be a compact manifold with a foliation SP of codi­
mension-one. Then there exists a smooth closed curve embedded in M 
transversely to JF\ 

PROOF. By passing, if necessary, to a two-sheeted covering of M, 
choose a vector field V transverse to the foliation. Fix any point and 
consider the integral curve of Vthrough it. Either it is closed or it eventually 
accumulates on itself. When the self-accumulation is sufficiently tight, the 
curve will return to the same distinguished coordinate neighborhood and 
can be easily closed while maintaining transversality. 

5. Notions of equivalence. The collection of different foliations on a 
given manifold is, in general, tremendous, and in order to make a quantita­
tive approach to the subject it is necessary to establish some broad notions 
of equivalence. We shall list some of the important ones here for future 
reference. 

Let e^o and J ^ be two codimension-y exfoliations on an ra-manifold M. 
A. J^o and J^i are said to be Cs-conjugate (O^s^r) if there exists a 

dififeomorphism of M, of class Cs, which maps the leaves of ^0 onto the 



1974] FOLIATIONS 389 

leaves of SFX. If ^=0 , J^0 and 3FX are topologically conjugate. If s=r and 
the diffeomorphism is isotopic to the identity, the foliations are com­
pletely equivalent. 

B. ^"0 and !FX
 a r e s aid to be homotopic if there is a continuous family 

of integrable plane fields rt, 0 ^ 5 = 1 , such that r 0 = r ( J r
0 ) and r 1 = r ( J r

1 ) . 
(We assume that each tFt gives a foliation of class Cr.) 

Problem 3. Do there exist nonhomotopic foliations with homotopic 
plane fields ? 

C. J^o a n d ^ i a r e called integrably homotopic if there exists a codi-
mension-*/, Cr foliation J^ of the product M x [0, 1] which is transverse 
to the slice Mx {t} for each te [0, 1], and which induces the foliation J^0 

on Mx{0} and ^r
1 on M x { l } (by intersection of these slices with the 

leaves of J^). Note that if J^0 and 8FX are integrably homotopic, they are 
homotopic. The converse is not true. In fact, if M is compact, then #*0 

and SFX are integrably homotopic if and only if they are completely 
equivalent. (See [M4].) Thus, any two foliations of the torus by "parallel 
lines" are homotopic but they are integrably homotopic iff they have the 
same slope. 

If we drop the requirement that J^ be transverse to M x {t} for 0<f < 1 
in the above definition, the foliations J ^ and J ^ are then called concordant. 
A more general notion than this is the following. 

D. Let MQ and M± be two closed, oriented m-manifolds with codimen-
sion-q, exfoliations. Then these foliated manifolds are said to be foliated 
cobordant if there is a compact, oriented (m+l)-manifold Jl with 
boundary d^=M1—M0 and with a codimension-^, CMbliation IF 
transverse to the boundary and inducing the given foliation there. The 
resulting foliated cobordism classes form a group under disjoint union, 
which we denote J ^ f l ^ . 

In the case q=l the group operation has an interpretation similar to 
that of connected sum. Let M0 and Mx be compact, oriented manifolds 
with codimension-1 foliations and choose embedded closed curves 
YO^MQ, y^M^ transverse to these foliations. (See Lemma 4 above.) 
Let JT0 and Jfx be tubular neighborhoods of y0 and yx sufficiently thin 
that there exist diffeomorphisms^.:tyTfc->51xZ)m~1, k=0, 1, mapping yk 

to S1 X 0 and sending the foliation of Jfk onto the foliation of S1 X Z>m_1 

by the disks {r}xDm _ 1 . We now glue M0—y0 to M1—y1 along the sets 
^h—7k by the diffeomorphism d—f^ ° h of0:^V0—y^^i—y-i where 
h:S1xDm-1^S1xDm~1 is given by h(t, *)=(*, (l-\x\)xj\x\) and/T 1 o/0 

is assumed to be orientation reversing. The resulting manifold, which we 
denote M0icMl9 is again compact, oriented and has a codimension-1 
foliation. 

Of course, the manifold MQ^MX depends on many choices (of curves, 
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diffeomorphisms, etc.), however, the resulting foliated cobordism class is 
independent of these choices. In fact, MoicM1 is foliated cobordant to the 
disjoint union; so for any ic operation, [M0itM1]=[M0]+[M1], 'mtF£lr

mtl. 
As a first approximation to J^ïî one can study the bordism groups of 

g-plane fields. For some nice results in this direction see Koschorke [KO]. 
It has been proven by W. Thurston that ^ Q J i l ^ r 7 | T r , Tr] where 

rr=Diff[(»S1) is the group of orientation preserving Cr diffeomorphisms of 
the circle. Hence, by a result of M. Herman [HER], J ^ Q ^ O . 

In contrast it has also been proven by Thurston [Th2], using the charac­
teristic class of Godbillon-Vey (see §5), that for r ^ 2 there is a surjective 
homomorphism 

(5.1) &aitl-+R. 

Hence, even with this highly indiscriminant notion of equivalence there 
exist uncountably many distinct codimension-1 foliations of three-mani­
folds. In fact, Thurston constructs these noncobordant foliations all on Sz. 

Problem 4. Determine the kernel of the homomorphism (5.1). In 
particular, decide whether it is zero. 

It has been shown by Rosenberg and Thurston [RT] that the natural 
map 

(5.2) &a?tl-+&Q!itl 

has a nonzero kernel. In light of the results of Mather on BT\ (see next 
section), it is plausible to conjecture that ^Q^tX=0. 

Problem 5. Determine whether J ^ Q ^ ^ O , or at least whether the map 
(5.2) is surjective. 

We finally mention the general problem. 
Problem 6. Determine the structure of ^Q^^ for m > 3 . 

6. The general theory. One very effective technique of modern mathe­
matics is that of reformulating a given problem in the category of topolog­
ical spaces and continuous maps where one has available the machinery 
of algebraic topology. This approach has enjoyed a certain amount of 
success in the study of foliations, and has led to constructions which should 
be of* central importance for many questions in the study of analysis on 
manifolds. The work is due to Haefliger, and the primary reference for 
details omitted in the following discussion is his article [H4]. 

To make a homotopy-theoretic approach to foliations it is necessary 
to generalize (or soften) the definition. Observe that any codimension-^, 
Cr foliation (for r>0 ) on a manifold M can be presented in the following 
way. There is an open covering {0^iej of M and a family of Cr maps 
{fihei* where/ , . :^ .—^ is a submersion, with the following property. For 
each i, j si and each x e 6tC\6j there is a Cr diffeomorphism y^ from a 



1974] FOLIATIONS 391 

neighborhood off^x) to a neighborhood off^x) such that 

(6.1) Si = VU 
in a neighborhood of x. Furthermore, for any x e 6iC>i&jr\0k we have 

(6-2) yl^y^oy^ 

in a neighborhood of fi(x). 
Our "cocycle" conditions (6.1) and (6.2) guarantee that foliations 

defined locally by the submersions ft piece together to give a global folia­
tion of M. If we begin with a foliation presented as in Definition 1, we 
obtain functions ƒ as above by projecting the local distinguished coordinate 
maps onto the last q coordinates. 

Note that if we set 

(6.3) %l = dyl 

for all i,j e I, we obtain the transition functions for the normal bundle to 
the foliation (cf. Steenrod [ST]). 

Note furthermore that if each ft above is a local diffeomorphism (i.e., 
the foliation has dimension 0) then the foliated structure defined is just 
the differentiable structure of M, and the bundle given by (6.3) is the tangent 
bundle of M (thought of as the normal bundle to the "point" foliation). 

We now broaden the definition of a foliation by allowing the local 
submersions ƒ to be arbitrary continuous maps. In this way we can 
define foliations on general topological spaces. Before stating this explicitly 
we make one observation (following Haefliger) for the sake of elegance. 
For each x e (Pi9 y% is the identity map on a neighborhood off^x). Hence, 
if we know the map x^y^] (=germ of the identity map atf^x)), we 
certainly know fi(x); and we may replace ƒ (x) by y%. Doing this reduces 
(6.1) and (6.2) to the single cocycle condition (6.2). 

Denote by Vr
a the set of germs of local Cr diffeomorphisms of Rq (homeo-

morphisms, if r=0) . For y e Fr
a let a(y) e RQ denote the source of y9 and 

r(y) its target. Whenever, o,(y2)=T(y1), the composition y2 o yx is defined. 
There is a natural topology on Tr

q such that the inverse map, ^H->7_1, and 
the composition map, where it is defined, are continuous. (The topology 
is the usual germ, or "sheaf-like", topology.) Identifying a point x eRq 

with the germ of the identity map at x gives a topological embedding of 
B? into r ; . 

DEFINITION 3. Let X be a topological space. A codimension-^, Cr 

Haefliger cocycle over an open covering ^ = { 0 J « e / of Xis an assignment 
to each pair i,j G I of a continuous map y ^ i ^ n ^ - ^ r j such that for all 
i,j9 k el 

Yki(x) = ykj(x) o yH{x) 
for x G (9^(9^(9^ 
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Two such cocycles over open coverings °tt and °U' are said to be equivalent 
if they extend to a cocycle on the disjoint union °ll\J^W'. (We allow &i=&j 

for ij£j in the definition above.) An equivalence class of cocycles is called 
a codimension-<7, Cr Haefliger structure on X. 

Note that if J^ is a Haefliger structure on X and/ : Y-^Xis a continuous 
map, then ƒ induces a natural Haefliger structure ƒ *Jf on F. 

Clearly there are many uninteresting Haefliger structures on any given 
space, so we introduce an equivalence relation which is sensitive to certain 
important properties. Two Haefliger structures ^Q and ^f 1 on X are said 
to be concordant if there is a Haefliger structure M" on Xx [0, 1] such that 
jtfk=i*jl? where ik:X-+Xx [0, 1] by ik(x)=(x, k) for k=0, 1. 

Suppose that Jtf* is a codimension-*/, C r ( r>0) Haefliger structure on X, 
represented by the cocycle {yi0) over W={@i}iei. Then we can associate to 
J^ a ^-dimensional vector bundle v(J^) over X given by the local transition 
functions gij(x)=dyij(x) in a neighborhood of x e tf^ntf^. i>pf) is called 
the normal bundle of ^f. (For r = 0 , one gets normal microbundles.) One 
can easily check that concordant structures have the same normal bundle. 

Before proceeding let us examine some examples of codimension-1, C00 

Haefliger structures on a manifold M. 
EXAMPLE 6A. Any codimension-1, C00 foliation of M. 
EXAMPLE 6B. Any continuous function ƒ: M-+R. (%={M} and y = 

i o ƒ where i'.R-^Y™ is the natural embedding.) We may approximate ƒ by 
a smooth Morse function f'\M-+R so that the resulting structure is 
concordant to the one given by/ . 

EXAMPLE 6C. Consider a foliation with singularities given by functions 
fi'>®i~^R, as in the beginning of the section, except that e a c h / is allowed 
isolated nondegenerate critical points. This gives a Haefliger structure in 
the obvious way. 

We remark that every codimension-1, C00 Haefliger structure on M is 
concordant to one of type 6C. 

Note that the differentiable structure on Mm is itself a codimension-m, 
C°° Haefliger structure on M. 

The notion of Haefliger structures fits into a beautiful, unified theory. 
Each T£ is an example of a topological groupoid. A groupoid is a category 
in which the morphisms are invertible (and, generally, the objects in the 
category are identified with the units). A topological groupoid is a groupoid 
with a topology in which the maps yv-*y-x and (yl9 y'2)^yi ° y% (on the set 
where it is defined) are continuous. 

The following are two important classes of these objects. 
EXAMPLE 6D. Every topological group is a topological groupoid. (Here 

the category has only one object.) 
EXAMPLE 6E. Let f be a pseudogroup of local Cr diffeomorphisms of 
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Rq, for example: the pseudogroup Fg(C) of local biholomorphisms in 
CQ^R2q

9 the pseudogroup f r
Q(a) preserving a fixed symplectic form a on 

Rq, etc. (See [KN, Chapter I].) Associated to f is a topological groupoid 
r e r j , namely, the germs of elements in F. 

By replacing Fr
Q with a general topological groupoid V in Definition 3 

we obtain the notion of a Vstructure on X. 
If T is a topological group, a T-structure on Xh (the equivalence class 

of) a principal T-bundle over X. 
Suppose T comes from f as in Example 6E. Then every F-structure is, 

in particular, a T-structure. For example, every complex structure on a 
manifold M2m is a rw(C)-structure. However, a T-structure, in this case, 
is best thought of as a generalized f-foliation (a complex analytic foliation, 
a symplectic foliation, a foliated foliation or "multifoliation", etc.). 

Note that if F is defined as in Example 6E, then there is associated to 
r a subgroup G^GLg(R), defined by taking the differentials of the 
elements in F which fix 0 e RQ. To any T-cocycle {y{j} we can associate 
a G-cocycle {gtj} by setting gij(x)=dyij(x) where each gu can be con­
sidered as acting at 0 by parallel translation in Rq. This process associates 
to the T-structure a G-structure, that is, a principal G-bundle which is the 
normal bundle to the T-foliation with structure group reduced to G. 

Having introduced and motivated T-structures, we are in a position 
to state some results. Using categorical arguments (or, more directly, by 
using a generalization of Milnor's join construction for topological groups, 
cf. [BL]), Haefliger proves the following [H4]. 

PROPOSITION 2. Associated to any topological groupoid F there is a 
topological space BF, equipped with a F-structure J f r , such that: 

(i) To each F-structure £F on a paracompact X there is a continuous map 
f.X-^BF such that M>=f*jev. 

(ii) Two F-structures ffl§ and Jf\ on a paracompact X are concordant if 
and only if the associated maps f $ and f are homotopic. 

BF is called the classifying space for T, and a mapf:X->BF inducing a 
T-structure J4? on X is called the classifying map for Jtf. The proposition 
states simply that concordance classes of T-structures on X correspond 
bijectively to [X, BF], the homotopy classes of maps X-+BF. 

For topological groups this theorem is classical. 
Let us return to Haefliger structures. The space BFr

Q has a restructure 
and thus for r > 0 a normal bundle. Let 

v:BFr
Q-+BGLQ 

denote the map classifying the normal bundle. (This map can be obtained 
also by noting that taking the differential gives a continuous homomor-
phism Fr

Q-+GLQ. v is then the induced map on classifying spaces.) Let J^ be 
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a Haefliger structure on a paracompact X with normal bundle v(#?). I f / i s 
the classifying map for ^ and v(f) the classifying map for v(J^), then the 
following diagram commutes. 

X —f-+BYr
Q 

BGLq 

We can now formulate in a homotopy-theoretic setting the general 
question discussed in previous sections, namely: 

Q. When is a given plane field homotopic to a foliation! 
We replace this question with the following. 
HQ. When can a given map n:X-+BGLa be lifted to a mapf:X->BTr

Q 

such that n=v <>ƒ? 
We shall see in the next section that for open manifolds an answer to 

HQ gives an answer to Q. Moreover, the question HQ can be dealt with 
by the methods of homotopy theory. To do this it is necessary to study the 
homotopy-theoretic fiber FTr

q of the map v. (The space FTl can be thought 
of as the classifying space for Haefliger structures with a framing or 
trivialization of the normal bundle.) The obstructions to lifting the map n 
will be cohomology classes with (twisted) coefficients in the homotopy 
groups of FFr

q. Any knowledge of the homotopy-type of these basic spaces 
BYr

q and FVr
Q is of enormous interest in geometry. The first results of this 

type are the following. 

THEOREM 12 (HAEFLIGER [H3]). For l ^ r ^ o o , 

(6.5) i r / F r j ) = 0 

for 0^j^,q. In the real analytic case (r=co), (6.5) holds for O^j^q—l. 

COROLLARY 4. If a paracompact X has the homotopy type of a k-
dimensional complex, where k^q+l, then the concordance classes of TJ 
structures ( l ^ r ^ o o ) correspond bijectively to the equivalence classes of 
bundles over X, 

We recall that Bott has found necessary topological conditions for a 
bundle to be equivalent to an integrable one (Theorem 2). One might 
expect this condition to carry over to the homotopy-theoretic case, i.e. 
from question Q to HQ. Indeed, it does. 

THEOREMH2. Themapv*:Hk(BGLQ; R)->H\BTQ; R) is zero for k>2q. 

The fascinating thing is that over finite fields quite the reverse is true. 
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THEOREM 13 (BOTT AND HEITSCH [BHI], [HI1]). For q^.2, the map 
v*:H*(BGLQ; ZP)-^H*(Brq; ZP) is infective for any prime p. Hence, v* 
is also infective on integral cohomology. 

Combining Theorems H2 and 13 gives 

COROLLARY 5 (BOTT-HEITSCH). For q^2, the group H^^BT^ Z) is 
not finitely generated for 2k>q. Thus some homotopy group TT^FY^ is not 
finitely generated. 

Thus, as one might have expected, the spaces BTr
q are tremendous. 

The theorems above do not apply to the codimension-one case. There is 
much known, however, about this case, and the results vary drastically 
with the differentiability. The first theorem reflects the rigidity of analytic 
foliations that we witnessed in Theorem 4. 

THEOREM 14 (HAEFLIGER [H4]). The space FT™ has the homotopy-type 
of an Eilenberg-Mac Lane space K(TT, 1) where TT is an uncountable, torsion-
free , perfect group (i.e., ^FT^^TT, T r ^ r ^ O J M ) . 

Note that FT™ is the classifying space for transversely oriented, codi­
mension-one analytic Haefliger structures. Therefore, the concordance 
classes of such structures on X correspond bijectively to the homo-
morphisms TT1(X)-+TT. In particular, if TT^X) is a torsion group, then 
every T^-structure is analytically concordant to the trivial one. 

Some of the deepest work in the codimension-one case is due to Mather 
[MAI], [MA2] who proved by means of explicit geometric constructions 
that the homology of FY{, 0^r5^ co, is isomorphic to the homology of a 
double complex obtained by iterating the bar construction on the group 
Gr=T)\ftr

K(R) of Cr-diffeomorphisms of R with compact support. From 
this he obtains a spectral sequence whose E1 term can be expressed in 
terms of H*(Gr) and which converges to H*(FTr

x\ Z). For all the corollaries 
of this see the announcement [MAI]. We mention here two important 
consequences. 

THEOREM 15 (MATHER). The space FTl is contractible. Hence, any two 
codimension-one topological Haefliger structures are topo logically con­
cordant. 

THEOREM 16 (MATHER). For l^r^co, there is a natural isomorphism 

Grl[Gr,Gr]^H2(FT{;Z). 

In particular, 

i /2(Frf;Z)(^7T2(Frn) = 0. 

Together with Theorem 12, Theorem 16 shows that FT™ is 2-connected, 
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Utilizing the new cohomology invariant of Godbillon-Vey, Thurston 
proved the following. 

THEOREM 17 (THURSTON [Th2]). For r^2, there is a surjective map 

This contrasts dramatically with Theorems 14 and 15, and shows that 
even the spaces BT{ are very large. 

Note. This result has since been generalized by Thurston to give 
surjective homomorphisms H2q+1(FYr

q; Z)-+R for all q^l, r^.2. 
Theorem 17 still leaves open the following. 
Problem 7. Determine the homotopy groups rr^FYl) for y=4 , 5, 6, • • • 

and 2 ^ r ^ o o . To begin, determine whether the above foliations of S2n+1 

can be extended as Haefliger structures over the ball £>2n+2. 
Very recently Thurston has succeeded in extending Mather's construc­

tions to foliations of general codimension. He has developed a theory 
which relates the classifying spaces for certain classical pseudogroups 
(Example 6E above) to diffeomorphism groups of manifolds. To state his 
results I will need some definitions. Let G be a topological group, and let 
Gô denote the same group with the discrete topology. The identity homo-
morphism GÔ->G is continuous and has a homotopy theoretic fiber de­
noted G~~. G~ in isfact a group. To see this we recall that 

G~ = i(g> 7) e Gô X G7: r(0) = g and y(l) = e) 

where / = [0, 1] and e e G is the identity. The multiplication on G~ is the 
one inherited from GôxGz. The classifying space for G~ arises in the long 
exact sequence of fibrations >G~~>GÔ->G-+BG~~-+BGÔ (=K(GÔ, l))-> 
BG-+ 

We can now state one of the principal results. For a topological space X, 
let £lqX denote the gr-fold loops on X. 

THEOREM 18 (THURSTON [TH4]). For O^r^co there exists a continuous 
map 5(Diff^(i?a)~)-^iQQ,(/rrg) which induces an isomorphism on integral 
homology. 

This leads to generalizations of Theorems 15 and 16 above. Using the 
result of Mather [MA3] that H*(BDiïïx(Rq))=0, Thurston obtains 

COROLLARY 6. For allq, the space FYQ
Q is contractible. 

By factoring the above map through B(Dif[r(TQ)~~) and applying 
Herman's theorem [HER], he obtains 

COROLLARY 7. For allq^ 1, rr^FV^^O. 
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This corollary shows that the dimension in Bott's vanishing result 
(Theorem H2 above) is best possible. Let K* be a 4-dimensional finite 
simplicial complex and f.K*-+B02 a map such that ƒ *px ^ 0 in H*(K*; Z) 
where p1 denotes the first universal Pontryagin class. Since TT3(FT^)=09 

we know from obstruction theory that there exists a lifting off, ƒ: K^-^BY^ 
such that v °f=f Hence, v^p^O. By considering products of K*, we get 
that v*(p$)9*0 in H*\BT?k; R). 

The results above leave some interesting questions. 
Problem 8. Is the fiber FT™ 2^-connected? 
Problem 9. What is the homotopy type of FF% for q> 1 ? 
It is interesting to note that the homology of FYr

q is also related to that 
of the diffeomorphism group of a manifold. 

THEOREM 19 (THURSTON). Let Mq be a compact differentiate manifold 
of dimension q, and let i:Rq->MQ be an embedding given, say, by a local 
coordinate chart. Then for any r, O ^ r ^ o o , the map 

i*:Hk(B(Diïïr
K(R«)-); Z)-* Hk(B(Diffr(MT~); Z) 

is an isomorphism up to and including the first dimension k where the groups 
are nonzero. 

Combining this result with a theorem of Epstein [EP1] gives 

COROLLARY 8. For any compact manifold MQ, the connected component 
of the identity in Diff^^M^) is a simple group. 

One of the first things that occurs to a topologist when classifying 
spaces are mentioned is characteristic classes. Given any topological 
groupoid r , the ring of universal characteristic classes for Y is defined 
simply as H*(BY; Z). Note that for a given a eH*(BY; Z), every re­
structure J f o n a paracompact X has associated a well-defined character­
istic class a(Jf ?)=/*(a) where ƒ: X->BV classifies Jf . From the above 
theorems we know there are rather a lot of universal characteristic classes 
for Haefliger structures. 

Theorem 10 states that up to dimension q the I^-characteristic classes 
are exactly the Pontryagin classes of the normal bundle. (Thus, for 
differentiate structures on manifolds we are getting nothing new.) How­
ever, in higher dimensions, new classes occur. Of course, the mere existence 
of such classes has little value without some method of computing them 
for a given foliation. The first formulas of this sort were given by Godbillon 
and Vey [GV] and by Bott [B3]. The Godbillon-Vey construction goes as 
follows. Let J5" be a codimension-^ foliation on a manifold M and suppose 
r(J^) is orientable. Then ZF is defined by a global decomposable ^-form Q. 
(Let {{&iy Xi))iei t>e a locally finite cover of distinguished coordinate charts 
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on M with a smooth partition of unity {p J . Then, set 

Q = 2 Pi;dx?~q+1 A • ' ' A dxT.) 
iel 

Since, i i is integrable dQ,=dAQ> where 0 is a one-form on M. The (2#+1)-
form y=0AddQ is closed, and its de Rham cohomology class \y\{^) e 
H2q+1(M; R) is independent of all the choices involved in defining it. It 
depends only on 3F. This construction can be generalized to arbitrary 
restructures for r ^ 2 , as a mixed de Rham-Cech cohomology class, and 
thus gives an element in H2Q+1(BTr

q; R). If M is the unit tangent sphere 
bundle to a compact manifold of constant negative curvature, and if 3F 
is the codimension-ç Anosov foliation arising from the geodesic flow (flow X 
stable foliation; see [AR]), then [y](^)^0 in H2q+1(M;R). This was 
first noticed by Roussarie and Thurston. It follows that none of these 
classes is trivial. 

Note that the Godbillon-Vey class is, in fact, a cobordism invariant 
of codimension-^ foliations of compact (2ç+l)-manifolds (cf. §5). 

The Godbillon-Vey construction gives us one computable characteristic 
class for Yr

a. What we would like optimally is a generalization of the 
Chern-Weil construction for GLQ. (See [KN, vol. 2].) That is, we would 
like an abstract graded differential algebra with the property that for any 
codimension-^ foliation F on a manifold Af, there is a g.d.a. homo-
morphism into the de Rham algebra on M, defined in terms of J^, such 
that the induced map on cohomology factors through a universal map 
into H*(BVr

q; R). This was already accomplished by Godbillon and Vey 
for q= 1. The algebra they discovered was the Gelfand-Fuchs Lie coalgebra 
of formal vector fields in one variable. This construction has been general­
ized to arbitrary codimension by Bott and Haefliger as follows. Consider 
the graded differential algebras (over R) : 

WOq = A(W1? UZ, ' • • , W2[<z/2]-l) ® PQ(Cl> ' * ' , CQ) 

with du—Ci for odd / and dc~0 for all /; and 

Wq = A(ul9 u2, - • • , uq) ®Pq(cl9 • • • , ci) 

with du — Ci and dc~0 for z = l , • • • , q, where: deg u~2i— 1 ; deg c~2i; 
A denotes exterior algebra; and Pq denotes the polynomial algebra in the 
c/s modulo elements of total degree >2q. The cohomology of Wq is the 
Gelfand-Fuchs cohomology of the Lie algebra of formal vector fields in q 
variables. We note that the ring structure at the cohomology level is trivial, 
that is, all cup products are zero. 

THEOREM 20 (BOTT-HAEFLIGER-GODBILLON-VEY [BH], [GH]). There 
are homomorphisms 

(p:H*(WOq) -> H*(BTr
q; R), cp:H*(WQ) -> H*(FTr

Q; R) 
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for r^.2 with the following property. If IF is a codimension~q9 C
r foliation 

of a manifold M9 there is a g.d.a. homomorphism 

(p<r:WOQ->A*(M) 

into the de Rham algebra on M, defined in terms of the differential geometry 
of IF and unique up to chain homotopy, such that on cohomology we have 
ç y = / * o cp where f:M-+BTr

q classifies F. If the normal bundle of F is 
trivial, there is a homomorphism 

with analogous properties. 

For the explicit geometric construction of cp^ and <py in terms ot 
connections on v(F), see Conlon's notes from Bott's lectures [B2]. 

The diagram 
H*(WOq) - % H*(BTr

q; R) 

H*(Wq)±+H*(FT'Q;K) 

where/? is the natural map and i* is induced by inclusion, is commutative. 
If a foliation has trivial normal bundle, v(F), the theorem says that çy 
factors through H*(Wq) (on the cohomology level). Note that if TT:P(F)-> 
M is the principal bundle associated to v(F), then TT*F on P{F) always 
has a trivial normal bundle. Hence, there is always a diagram: 

H*(WOq) - ^ - > H*(M\ R) 

H*(Wq) ^ > H*(P(F); R) 

which factors through the diagram above. 
The appearance of Gelfand-Fuchs cohomology has a direct analogy 

in the cohomology of topological groups. Bott and Haefliger have shown 
that the notion of continuous (or differential) cohomology for Lie groups 
has a natural generalization to the Lie groupoids coming from pseudo-
groups in Rq (cf. Example 6E), and that in analogy with the work of Van 
Est, this continuous cohomology is just the Gelfand-Fuchs cohomology. 
(See [H6] for an excellent exposition.) Thus, H*(Wq) is naturally the 
continuous cohomology of Tr

q, and H*(WOq) is the continuous cohomol­
ogy of (TJ, Oq) (i.e., the cohomology of continuous, Oa-invariant cochains). 
A fundamental consequence of this result is that any characteristic class 
of foliations which is constructed locally in the algebra of differential 
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forms will be, universally, in the image of cp (or cp). However, H*(BTr
q; R) 

in general contains much more than the image of cp. (See Theorem 17.) 
Some of the remaining, "discontinuous" cohomology is related to classes 
for bundles with discrete structure groups. 

An alternative approach to the cohomology of BVr
q has been taken by 

J. Simons, who has avoided the business of passing to the normal bundle 
by using circle coefficients. Continuing his work with S. S. Chern [CS], 
he has developed a theory which associates to a principal bundle with 
connection a family of characteristic homomorphisms from the integral 
cycles on a manifold to S1. For the Bott connection on a normal bundle 
to a foliation, the Simons characters of degree >2q define cohomology 
classes independent of the choice of Bott connection. His result can be 
described as follows. From the Bockstein sequence for the coefficient 
homomorphism O-^Z^R-^S1-^, we get the commutative diagram: 

H2k~\BGLq\ S1) - ^ > H2k(BGLQ; Z) - 1 > H2\BGLq\ R) 

(6.6) | [s jo 

H2k~HBYq\ S1) -^-> H2k(BYr
q\Z) - U H2k(BTr

q;R). 

For k>q, the right vertical map is zero by Theorem H2, and the middle 
map s is an injection by Theorem 13. By exactness, s(H2k(BGLq; Z))<= 
ôiH^-^BV^ S1)). Simons defines an extension Kf of H2k(BGLq; Z) and 
a map S such that the diagram 

Kf > H2k(BGLQ; Z) 

H2k-\Brr
q; S1) - 1 * H2k(BTr

q;Z) 

commutes. The extension is defined as follows. Let I2k(GLq) denote the 
homogeneous polynomials of degree k on the Lie algebra gla of GLq, 
which are invariant by the adjoint representation. (Recall that 7*(GLa)^ 
* lA, • • • , cq] where d e t ( A / - ^ l ) = ^ - c 1 ( ^ ) ^ - 1 + - • - + (-\ycq(A) for 
A G glq.) There is a natural map 

j:I2k(GLq) -> H2k(BGLq; R) 

given by the Chern-Weil homomorphism. We define the Simons ring Kq
k 

to be the kernel of the homomorphism : 

H2k(BGLQ; Z) x I2k(GLq) - ^ - > H2k(BGLq; R) 

where / is given in (6.6). Note that if p e I2k(GLq) involves some cm for m 
odd, then ( 0 , ^ ) 6 ^ * . 
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THEOREM 21 (SIMONS [SI]). For k>q andr^.2 there is a homomorphism 

SiKf-^H^iBT^S1) 

with the following property. If IF is a codimension-q, Crfoliation of a manifold 
M, there is a homomorphism 

S^'.Kf-^H^-^MiS1) 

defined in terms of the geometry of £F', such that S#r=f* o 5 where 
ƒ : M-> BTq classifies &. 

The Godbillon-Vey class arises in both theorems above. It is given as 
the cohomology class of ux<S>cl e WOq in Theorem 20. Reduced mod Z, 
it is the class 5(0, cj+1) in Theorem 21. 

It should be pointed out that, potentially, the homomorphisms op and 5 
carry some essentially distinct classes. That is, if both cp and 5 are injective, 
then neither of the subgroups image(5) or image(p o ̂ ) , where p is 
reduction mod Z, is contained in the other. 

The extent to which these homomorphisms are nontrivial is largely 
an open question. Some things are known. For example, one can easily 
check that H*(W01) has only two nonzero elements, the usual one in 
dimension zero and the Godbillon-Vey class in dimension three. Hence, 
cp\H*(WO^H*{BTr

x\ R) for 2<><;oo is injective. Bott and Haefliger 
have certain partial results in this direction for q^2. (For example, uxc\ 
and uxc% are linearly independent in H5(BFl; R).) Since the map s in (6.6) 
is injective and the projection Klk-+H2k(Brr

Q; Z) is surjective, the map 5 
is nonzero for even k. Furthermore, by computation of the Godbillon-Vey 
class, 5(0, cl+l) is not zero for all q. However, the following question 
remains open. 

Problem 10. Are the maps <p, y and 5 defined in Theorems 20 and 21 
injective? 

ADDED IN PROOF. It has been brought to my attention that some of 
these results on H*(BTQ) are also contained in the work of Kamber and 
Tondeur [KT]. 

It is interesting to note that most of the classes of dimension >2q+l 
discussed in these theorems depend only on the homotopy class of the 
foliation in the sense of §5B. (See [HI2].) For classes in dimension 2q+l 
this is not true. 

Before leaving this subject we remark that, in general, whenever T 
comes from a pseudogroup acting on Rq, as in Example 6E, the structure 
of FT is of great interest. A number of people are currently studying these 
spaces. Pasternak [P2] has results on FRTr

q, the classifying space for folia­
tions with bundle-like metrics. Landweber [LA] has shown that FVq(C) is 
(q— l)-connected, thereby obtaining results on the question of when an 
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almost complex structure is homotopic to an integrable one. Bott ([B3] 
and [B4]) has results on H*(BTq(C); R) and TT2Q+1(BTQ(C)). Thurston 
[TH4] has theorems similar to Theorems 18 and 19 above for volume-
preserving diffeomorphisms and for diffeomorphisms preserving a sym-
plectic form. The interested reader should also see [H4] for a discussion of 
further results on these spaces. 

7. Results on open manifolds. There is a tremendous difference between 
the theory of foliations on open manifolds and that on closed manifolds. 
In the open case it is difficult to obtain qualitative results. One can easily 
appreciate this by observing that any two codimension-<7 foliations of Rn 

are integrably homotopic. To prove this it suffices to show that any ^ 
on Rn is integrably homotopic to the foliation of a distinguished neigh­
borhood U^Rn where U^Rn. Let RnxR have the product foliation, 
and choose an embedding O : Rn x R^Rn x R such that ®(x, t)=((pt(x), t) 
where <p0=identity and (p1:R

n->U is a homeomorphism. Then RnxR, 
with the foliation O * ^ , is the desired integrable homotopy. This construc­
tion illustrates a powerful technique which is not available on compact 
manifolds, namely, that of "pushing the difficulties out to infinity". This 
technique makes it possible to obtain beautiful quantitative results. 

The general theory which applies to quantitative questions on open 
manifolds had its inception with the immersion theory of Smale and 
Hirsch and has undergone a long development, culminating recently in 
the work of Gromov. (See [PHI], [PH4], [PH5], [G], [H5].) The principle 
is: "Questions in analysis involving open conditions on open manifolds 
are always solvable". The general procedure of proof is to decompose the 
manifold as a handlebody; prove the result first for the disk, and then 
proceed to attach handles and argue inductively. 

We shall discuss how this theorem together with the results in §6 can 
be used to classify foliations on open manifolds. To begin it is necessary 
to present a foliation by an "open condition" as follows. Let N be a mani­
fold with a smooth, codimension-ç foliation 3F. For any manifold M we 
define the space Trans(M, N^) of smooth maps f\M->N which are trans­
verse to 3F. The space is given the usual topology for smooth maps. Of 
course, for ƒ G Trans (M, N&), ƒ * J r is a codimension-^ foliation of M9 

and Trans(.M, N#) is open in the space of all maps from M to N. 
We now consider the associated space Epi(r(M), v{^)) of continuous 

bundle maps from the tangent bundle T(M) of M to the normal bundle 
K ^ ^ T X A O M J ^ ) of the foliation, which is an epimorphism on each 
fiber. This space is given the compact open topology. There is a natural 
continuous map 

(7.1) D:Trans(M, JV» -> Epi(TTM), v{&)) 
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given by D(f)=p o df where df: T(M)-+T(N) is the differential o f / and 
P\T{N)-^T{N)IT{^)^V{^) is projection. 

Note that the space Epi is considerably larger than Trans. If M is parallel-
izable, for example, there always exists a map in Epi(r(M), vÇF)), where 
IF is the foliation of RQ by points (q^dim M). However, if M is compact, 
a corresponding transverse map, i.e., a submersion M-+Rq, does not exist. 
The startling fact is that for open manifolds it does exist. 

THEOREM 22 (GROMOV-PHILLIPS [G], [PH4]). For any open manifold M 
the map (l.l)isa weak homotopy equivalence, that is, it induces isomorphisms 
on all homotopy and homology groups. 

In particular, D establishes a one-to-one correspondence between the 
connected components (i.e., 7r0) of the two spaces. Thus, we conclude the 
following. 

COROLLARY 9. If M is an open manifold, then every codimension-q 
plane field T=ker(/?) for ft e Epi(r(M), v{^)) is homotopic to a foliation. 

It should be noted that Theorem 22 contains the Smale-Hirsch immer­
sion theorem and the Phillips submersion theorem. For the immersion 
theorem, let M be the normal bundle. 

In light of Corollary 9, our problem now is: given r on M, find N, J** 
and ft so that r = k e r ft. Following an idea of Milnor [M4], we can do this 
canonically by defining N to be the total space of the vector bundle v= 
T(M)jr. We say that a ^-dimensional vector bundle TT : V-+M is offoliated 
type if there exists a smooth codimension-^ foliation of V whose leaves 
are everywhere transverse to the fibers. (Thus for J? e 3F, TT\3?\3?-+M 
is a local diffeomorphism.) 

COROLLARY 10. Let M be an open manifold. Then a continuous co­
dimension-q plane field T on M is homotopic to a smooth foliation if and only 
if the vector bundle v=T{M)jr is of foliated type. 

PROOF. If T = T ( ^ ) , choose a riemannian metric on M and identify v 
with T1. The exponential map e:v->M is transverse on a neighborhood U 
of the zero-section. Shrink v into U and pull back the foliation e*IF to all 
of v. 

If v is of foliated type with a foliation &', consider the epimorphic bundle 
map T(M)->T(V)IT(<F) obtained as the composition. 

T(M) -^v-^-> T(v) - ^ > T{V)JT{^) 

where them's are natural projections and z is the canonical embedding of v 
along the zero-section. Applying Corollary 9 concludes the proof. 

We are now in a position to describe how one passes from general 
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Haefliger structures on M to honest foliations. The key observation is the 
following. 

LEMMA 4. A vector bundle v over a manifold M is the normal bundle to 
a Haefliger structure on M if and only if it is of foliated type. 

PROOF. If v is of foliated type, consider the Haefliger structure Jtf9 on 
M induced from the foliation on v by the zero section M->v. Clearly, 

Conversely, suppose v is the normal bundle of a Haefliger structure J^ 
on M defined by a cocycle yió over a cover %={Ot}iei. We define a new 
manifold J^(M), a normal thickening of Af, as follows. Assume °ll is 
locally finite. Then for i e ƒ, define Ui to be a small neighborhood of the 
graph Y~{x,f{x)}^OixRq. We identify a neighborhood of (x, fix)) e 
I\<= ui with a neighborhood of (x9f(x)) e V^ JJi by the diffeomorphism 
(x, y)-+(x, yH - y). The foliations of the C//s obtained by projection on 
Rq fit together to give a foliation 8F of J^(M). Choosing one of the obvious 
diffeomorphisms v-*Jf{M) to lift 3F shows that v is of foliated type. 

Combining Corollary 10 with Lemma 4 shows that: a codimension-^ 
plane field T on M is homotopic to a foliation iff v=T(M)\r is the normal 
bundle of a Haefliger structure on M, that is, iff the map cpv:M-+BGLQ, 
classifying v, lifts to a map cpp\M->BYr

q. It is, furthermore, possible to 
show that two foliations with the same normal bundle determine homo-
topic liftings if and only if they are integrably homotopic. 

The general classification theorem can now be stated. For p+q=m let 
Bp\BGLpXBGLq-+BGLm be the map induced by the standard homo-
morphism p : GLV x GLq->GLm. 

THEOREM 23 (HAEFLIGER [H3]). Let M be an open manifold of dimension 
m. Then the integrable homotopy classes of codimension-q, Cr foliations are 
in one-to-one correspondence with homotopy classes of liftings <p^ X q)T of 
the map cpT in the diagram : 

2?r, x BGLm_Q 
<PF*<PT _ — | v x M 

X BGLm_Q 

BGLm 

where cpT classifies the tangent bundle of M. 

Note that lifting cpT over Bp to cpv X cpT corresponds to the topological 
problem of finding of codimension-*/ plane field on M. The second lifting, 
of cpv over v to (p#r, is the problem of integrating the given (homotopy class 
of the) plane field. Of course, obstructions to this second lifting will, in 
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general, exist. However, in time they should become reasonably comput­
able. The beauty of this theorem is that the general machinery developed 
to handle the homotopy question HQ in §6 can now be brought to bear 
on the analytical question Q for open manifolds. For example, in view of 
Theorem 12 and Corollary 7 we have the following. 

COROLLARY 11. Let M be an open manifold having the homotopy-type 
of a k-dimensional CW complex. Then if k^q+2, every codimension-q 
plane field on M is homotopic to a foliation which is uniquely determined 
up to integrable homotopy. 

8. Results on closed manifolds. In studying foliations on open mani­
folds, one finds wonderful classification theorems of a general type, but 
practically no qualitative results. The situation for compact manifolds is 
exactly the reverse. There are few general existence theorems. However, 
there is a vast literature concerned with deep special results. I shall mention 
here some of the interesting theorems and open questions. The reader 
should also consult [H2], [Rl], [R3], [R03] and [TS1]. 

The existence of foliations of codimension-one has been discussed in 
§4. For foliations of higher codimension, very little is known. One excep­
tion is the sphere S1. By Theorem 6 there is a codimension-one foliation. 
Alberto Verjovsky [V2] has constructed a foliation of codimension 3 and 
Jose Arraut [AR] has constructed one of codimension 5. The classical 
Hopf fiberings S7-+S* and »S7->P3(C) have codimensions 4 and 6 respec­
tively. It remains only to find a foliation of codimension-2. The existence of 
this foliation would answer for S7 the following general question of Reeb. 

Problem 11. Does every sphere that admits a codimension-^ plane 
field admit a codimension-*/ foliation? 

ADDED IN PROOF. Very recently Thurston has established a startling 
and beautiful quantitative theory for foliations on compact manifolds in 
codimension ^ 2 (cf. The theory of foliations of codimension greater than 
one, Comment. Math. Helv. (to appear)). The fundamental result is the 
following. 

THEOREM. Let r be a plane field of codimension q^.2 on a compact 
manifold M. Then r is homotopic to a foliation of class Cr Orgrrg oo, on M 
if and only ifr1 is the normal bundle to a Haefliger structure on M (i.e., if 
and only if the classifying map n:M-+BGLqfor r1 can be lifted to BTr

Q, 
cf. §6). Furthermore if r is already integrable in a neighborhood of some 
compact Set K<= M, then the homotopy can be chosen to be constant on K. 

There are several immediate consequences of this theorem. From 
Corollary 7 we have : 

(1) Every 2-plane field on a manifold of dimension ^ 4 is homotopic to a 
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foliation. (In fact, Thurston has extended his methods to make this true 
also for 3-manifolds, thereby eliminating the condition of transverse 
orientability in Wood's Theorem.) 

From Corollary 6 we have : 
(2) Every plane field of codimension g:2 on a manifold is homotopic to a 

C° foliation (which is actually Lipschitz with C°° leaves). 
(3) The span of any q-frame field (q^2) on a manifold is homotopic to 

the normal bundle of a foliation. 
In particular, this result answers Reeb's question for S7 and gives the 

following partial answer for general spheres. 
(4) Every plane field on Sn of codimension ^n/2 is homotopic to a 

foliation. 
While on this subject we shall mention a closely related question. 

Following Kodaira and Spencer [KS] we can define a multifoliation of a 
manifold M to be a (finite) collection of foliations J ^ , • • • , <Fr on M 
such that all intersections are "transverse", that is, at any point of M, 
codimOrJ^rv "C\T^'i)=codim(T<Fii)'\ hcod im(T^) for all sub­
sets {il9 • • • , is}<^{\9 • • • , r}. (Thus, these intersections themselves 
determine foliations.) The multifoliation is called total if r=dim(M), and 
codim(J r ,)=r—1 for each i. In this case, the tangent bundle of M is 
reduced to a sum of line bundles. D. Tischler [Til] has proven that every 
3-manifold which is the total space of a principal circle bundle over an 
oriented surface admits a total multifoliation. In particular, this includes Sz, 
so in analogy with Reeb's question above, we pose the following problem. 

Problem 12. Does S7 admit a total multifoliation? 
Problems 11 and 12 can, of course, be restated for general manifolds. 

For a discussion of further problems of this type, see [TS1]. 
One of the most fundamental classical results in the study of dynamical 

systems in the Poincaré-Bendixson Theorem which asserts that for a C1 

flow on S2 every minimal closed invariant set is either a fixed point or a 
closed orbit. A natural generalization of this result to foliations would 
assert that for a C1 foliation of Sn, every minimal, closed, invariant (a 
union of leaves) set is a closed leaf. This is far from true. (See, for example, 
[S2], [R3], [RR1], and [RA].) However, the question of the existence of 
a closed leaf remains open, and one of the most celebrated results in the 
theory of foliations is the following. 

THEOREM 24 (NOVIKOV [N]). Let M be a compact ^-dimensional 
manifold with a smooth codimension-one foliation J r , and suppose that any 
of the following conditions are satisfied: 

(1) 7TX(M) is finite, 
(2) 7T2 (^)^0, 
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(3) there exists a closed curve in M transverse to IF which is null-
homotopic, or 

(4) there exists a leaf & e IF such that the map 7r1(JSf)->77'1(M) has 
nontrivial kernel. 

Then IF has a closed leaf In fact, except for case (2), the foliation con­
tains a Reeb component. 

In case (2) either there is a Reeb component or M is a finite quotient of 
a fiber bundle over S1 (i.e., all leaves are compact and =S2 or P2(R)). 

COROLLARY 12. Every smooth codimension-one foliation of S3 has a 
Reeb component. 

This leads to the following natural question. 
Problem 13. Does every smooth, codimension-one foliation of *S2w+1, 

for w > l , have a closed leaf? 
One partial result of this type has been obtained by Joe Plante [PLI]. 

He shows that if the leaves satisfy certain intrinsic growth conditions, 
then the strong Poincaré-Benedixson Theorem holds, i.e., every minimal 
set is a closed leaf. His methods give nice results for actions of nilpotent 
Lie groups on simply-connected manifolds. 

Sacksteder [S3] has given a condition in terms of linear holonomy 
groups, which guarantees the existence of a compact leaf. 

Note that if a codimension-one foliation of Sn has a closed leaf, then 
it certainly does not have a dense leaf. However, it is not even known that 
foliations of Sn with dense leaves cannot exist. 

CONJECTURE. Let M be a compact manifold which admits a smooth 
codimension-one foliation having a dense leaf. Then, HX(M\ R)y*0. 

It should be noted that Hector [HEC] has recently constructed a co­
dimension-one foliation of euclidean space in which every leaf is dense. 

ADDED IN PROOF. Paul Schweitzer has recently shown that if a mani­
fold of dimension ^ 5 admits a smooth, codimension-one foliation, then 
it also admits a codimension-one, C° foliation having no compact leaves. 

One might naturally ask whether Novikov's theorem extends to a 
larger class of 3-manifolds. In particular, could it be true for a manifold 
which is a K(TT, 1)? This question was recently answered by W. Thurston 
who considered 3-manifolds which are circle bundles over surfaces. Here 
it is sometimes possible to construct foliations without compact leaves 
by the methods of §1B. However, this is the only allowable procedure. 

THEOREM 25 (W. THURSTON [TH1]). Let M be the total space of an 
oriented circle bundle I over an oriented surface H^S1xS1, and let IF 
be a C2, transversely oriented foliation of M. Then either !F is isotopic to a 
foliation transverse to the fibers of'| or IF has a compact leaf. In particular 
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*ƒ l%(f)l>lz(^)l> where % denotes Euler characteristic, then ^ must have a 
compact leaf. 

The second part of this theorem follows from a pretty result of John 
Wood [W3] that a circle bundle f over a compact surface 2 admits a 
foliation transverse to the fibers if and only if |#(£)|^min{0, —#(2)}. 
(Here the bundle must be " 2 orientable", i.e., the total space of f must be 
orientable.) 

The question of closed leaves for foliations of higher codimension 
goes back to Seifert who posed the following well-known 

SEIFERT CONJECTURE. Every nonsingular vector field on S3 has a closed 
integral curve. 

Seifert proved the conjecture for vector fields C°-close to the Hopf 
vector field (or, more generally, C° close to the vector field of any Seifert 
fibering of SB). Novikov [N] proved the conjecture for fields transverse to 
a codimension-one foliation of Sz. Pugh [PU] proved the conjecture for 
generic vector fields. However, in a remarkable paper [SC], Paul Schweitzer 
has recently shown the following. 

THEOREM 26 (P. SCHWEITZER). Every C1 foliation of codimension ^ 2 
on a manifold is homotopic to a C1 foliation with no compact leaves. 

COROLLARY 13. Every homotopy class of nonvanishing C1 vector fields 
on S3 contains a counterexample to the Seifert conjecture. 

Schweitzer's foliations actually have tangent plane fields of class C1 

but definitely not of class C2. Hence, the conjecture remains open for vector 
fields of class Cr where r^.2 or r=co. 

In the case that compact leaves do exist, it is natural to ask about their 
topological type. The most classical and important result of this type is 
the Reeb Stability Theorem ([Rl]). 

THEOREM 27 (G. REEB). Let ^ be a Cr foliation on a manifold M where 
r ^O , and suppose that J^ has a compact leaf 3? with finite fundamental 
group. Then every neighborhood of 'jSf contains an invariant neighborhood U 
with the property that each leaf 3" c: U is a finite covering space of £?. 

Thus, if oaf is simply connected, [/has the form 3?xDq with the foliation 
{JS? x {p}}vez>: I n general, a finite covering of U is of this form, where JSP 
is replaced by the universal covering of «Sf. 

Note that M need not be compact, and the codimension does not matter. 
If we tighten these requirements we get stronger results. 

COROLLARY 14. Let M be a compact manifold with a smooth, codimen­
sion-one, transversely orientable foliation £F. If IF has a compact leaf J§? 
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with finite fundamental group, then M is a fiber bundle over S1 with fiber 
££ (and F is the associated foliation). 

Theorem 25 can be strengthened to include all nearby foliations. 

THEOREM 27' (G. REEB). Let M, F and ££ be as in Theorem 25. Then 
given a neighborhood i^ of ££, there is a neighborhood & of F in the space 
of Cr foliations of M and a neighborhood °U of «jSf in M such that every 
i ? ' e F' e & with £P' C\°ll^ 0 is a finite covering space of' JSf. 

There is a version of Theorem 25, due to B. Reinhart [RI1], for foliations 
with metric properties, that is, for foliations whose holonomy (see below) 
is distance-preserving in some riemannian metric. Such a metric is called 
bundle-like. For these foliations there is also an associated global stability 
theorem, similar to Corollary 14, which holds in general codimensions 
[RI3]. 

Related to these results is a deep theorem of Sacksteder. To state it, we 
need to introduce the important notion, due to Ehresmann, of holonomy. 
Let F be a codimension-g foliation on M, and at a fixed p e M choose an 
embedding cp\Dq->M transverse to F with cp(0)=p. To each oriented 
loop y based at p and lying in the leaf j£? containing p, we associate a 
(germ of) a diffeomorphism hy of a neighborhood of 0 in Dq to another 
neighborhood of 0 as follows. Choose a transverse map O : Dq X S^M 
with the property that O(0, 0) = y(0) and O|Z>*x{0} = <p. For xeDq, 
follow the curve of the foliation induced on Dq X S1 as 0 traverses S1. For 
x sufficiently close to 0, it is possible to pass completely around S1 and 
return to a new point h7(x) e Dq. The map hy depends only on the homotopy 
class of y in J£?, and is called the holonomy map along y. We get a homo-
morphism, ^(JSf, p)->Tr

q, the germs of local diffeomorphisms of Rq which 
fix 0. The image is the holonomy group dit p. If 7r1(«5f,/?) = {l}, then the 
holonomy group at/7 is trivial. 

THEOREM 28 (SACKSTEDER [S3]). Let M be a compact manifold with a 
codimension-one, exfoliation F, and suppose that all the holonomy groups 
of F are finite. Then there is a riemannian metric on M invariant under 
holonomy, and M is covered by Rx£? where ££ is either a leaf or a two-fold 
cover of a leaf in F. 

In particular, if F is orientable and all the holonomy groups are trivial, 
then there is a fixed-point free flow on M which preserves F, i.e., maps 
leaves to leaves for all time. 

Sacksteder also shows in [S3] that if Mm has an orientable, codimension-
1 foliation F, given by the orbits of a locally free Rm~x action, and if no 
leaves of F are compact, then every leaf is dense and H^MiR^O. 
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Note. There was, incidentally, a minor error in Lemma 14.1(h) of 
[S3]. It was pointed out by E. Vidal and A. Vasquez that under the assump­
tions of Theorem 28, one can conclude that H^M; R)?*0 only if IF is 
orientable. Note, however that if !F is not orientable, its lift to an appro­
priate 2-sheeted covering surface is. The example of Vasquez is M= 
S1 X S2jZ2 where Z2 is generated by oc(z, x)=(z, — x) for (z, x)eS1xS2<^ 
CxRz and where J^ lifts to the foliation {{z} x S2}z€Si of S1 X S2. 

It is important to point out that neither the metric nor the flow in 
Theorem 28 are, in general, smooth. One must first change the differenti-
able structure of M. Once the change is made, the flow can be viewed as 
coming from a smooth vector field transverse to IF. The existence of such 
a vector field V means that !F can be defined by a closed one-form. Let œ 
be the 1-form which vanishes on IF and has the property co(K)=l. Then 
one can check that dœ = œA(Lvœ) where L denotes Lie derivative. Since 
IF is invariant by V, Lvco=0. 

If IF comes from a submersion M-+S1 it is defined by a closed 1-form. 
The converse is not true. (Consider parallel foliations on a torus.) However, 
it is nearly true. 

THEOREM 29 (TISCHLER [TI2]). If M admits a codimension-one foliation 
defined by a closed form, then there is afibering M-+S1 which is close to IF. 

Much of the discussion in this chapter is concerned with when a foliation 
must have a compact leaf. One might equally well ask what can be said of 
a foliation all of whose leaves are compact. In codimension-one, the 
holonomy groups must all be finite, and by Sacksteder (or, in this case, 
the more elementary arguments of Reeb) some 2-sheeted cover of the 
foliation is a fibration over S1. In higher codimensions the problem is much 
harder. For example, Reeb [Rl, pp. 113-115] has given an example of an 
open manifold with a foliation by compact leaves such that the union of 
leaves meeting a certain compact set K is not compact. It is reasonable 
therefore to assume the manifold is also compact before asking for strong 
consequences. The best result of this type is the following deep theorem. 

THEOREM 30 (EPSTEIN [EP2]). Every Cr foliation ( l ^ r ^ o o ) of a com­
pact orientable three-manifold, possibly with boundary, by circles is Cr-
conjugate to a Seifert fibration. That is, every leaf has a saturated neighbor­
hood U^S1xD2 where the foliation is Cr-conjugate to the orbits of the 
action 

<pt(e
id,z) = (eiit+e\eii»/a)t-z) 

on SxxD2for relatively prime integers p andq. 

Outside this result little is known about the general problem. 
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Problem 14. Characterize the foliations of compact manifolds in which 
every leaf is compact. 

A fundamental area of study in the field of foliations surrounds the 
notion of stability. A smooth foliation F is said to be Cr-stable if every 
foliation F' such that r(F') is sufficiently close to r(F) in the Cr-topology, 
is C°-conjugate to F. Unstable foliations exist. (Again consider parallel 
foliations on a torus.) The interesting problem is the following. 

Problem 15. Find conditions which guarantee that a foliation is stable. 
Reeb's Theorem 25 together with Corollary 14 gives a result of this type. 

Furthermore, Rosenberg and Roussarie have recently shown the following. 

THEOREM 31 (ROSENBERG AND ROUSSARIE [RR4], [ROU]). No co-
dimension-one foliation of S3 is (C00) stable. The only stable foliations of 
S1xS2 are those conjugate to the foliation {{0}xS2:6 G S1}, modified by 
introducing a finite number of hyperbolic Reeb components along closed 
transversals. 

There are also results on stability of intrinsic components. 
One could analogously ask for specific properties of a foliation to be 

stable, for example, the property of having a compact leaf. Theorem 27' 
falls into this category and has been recently generalized by Hirsch. 

THEOREM 32 (M. HIRSCH [HR]). Let F be a Cr foliation ( r ^ l ) on a 
manifold M and suppose there is a compact leaf J? e F and an element 
a e TT-JXJS?) such that 

(1) a is in the center ofit^SP). 
(2) The differential of the holonomy map of en does not have 1 as an eigen­

value. 
Then for all e sufficiently small, there is a neighborhood OofF in the 

space of Crfoliations ofM, such that for each F' e &, there is a compact leaf 
££' e F' and a map f.3?-+3?' such that dist(x, ƒ (x))<e (in a fixed riemann-
ian metric on M). Moreover, ££" is unique and f is a homotopy equivalence. 

Condition (1) in this theorem can be replaced by: "a belongs to a nil-
potent subgroup of finite index". A version of the result is also true for the 
case r = 0 . (See [HR].) 

There is an area in the study of foliations concerned with questions of 
the following general type. What are the topological conditions necessary 
for a manifold to admit a foliation of prescribed type? For example, 
Rosenberg [R02] has shown that a (not necessarily compact) Z-manifold, 
C2foliated by planes, has the property that any embedded 2-sphere bounds an 
embedded ball. Moreover, from basic results of [ROl], the following 
theorem (due to Rosenberg and Sondow [R02] for m = 3 , Joubert and 
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Moussu [JM] for m = 4 , and Rosenberg [R02] together with results of 
C. T. C. Wall for m |>5) can be proved. 

THEOREM 33. If a closed m-manifold M admits a codimension-one, C2 

foliation where every leaf is homeomorphic to JRW-1, then M is homeomorphic 
to an m-torus, S1 X • • • X S1. 

Deep results in a similar vein have been obtained by Yerjovsky [VI] 
for codimension-one, Anosov foliations. (These foliations are not C2.) 

Theorem 33 for the case ra=3 has been extended by Rosenberg, 
Roussarie and Chatelet to foliations of 3-manifolds with boundary [RR2], 
[RR3], [CR]. This work includes a classification of Reeb foliations up to C° 
conjugation, and, in particular, the following generalization of the 
Denjoy theorem: Every C2 foliation of the 3-torus by 2-planes is C° conjugate 
to a linear foliation. (M. Herman has shown this to be false for C° foliations. 
The C1 case appears to be unknown.) This work, together with the results 
of Moussu and Roussaire [MR1], gives a classification of C2 foliations 
of TB with no Reeb components as follows : For each such foliation there 
is a decomposition of T3 into submanifolds with boundary Al9 • • • , Ap, 
Bl9 • • • , Bq where A^B0^T2xI and where, up to C° conjugacy: the 
foliation on Ai is a suspension of the Reeb foliation of S1X ƒ, and the 
foliation on Bó is transverse to the fibers of the projection T2xl->T2 

(and, thus, given by a homomorphism ^(r2)—•Diff+(/), cf. §1). 

There is an entire literature on noncompact group actions (in particular, 
Inactions) on manifolds, which we shall not discuss. However, for a 
presentation of the results of Lima, Novikov, and Rosenberg-Roussarie-
Weil on the rank of 3-manifolds (cf. §1C), see [TS1]. 

We have also omitted mentioning questions of deformations of foliations 
(see [KS], [H2] and [H4]), and questions of the applications of elliptic 
operator theory (see Reinhart [RI2]). 
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