ADDENDUM TO: "ON EXTENSIONS OF FUNDAMENTAL GROUPS OF SURFACES AND RELATED GROUPS"

BY HEINER ZIESCHANG

Communicated by F. W. Gehring, October 4, 1973

Copying the methods of J. Nielsen [1] Theorem 1 of [2] can be proved, i.e. that a finite torsionfree extension of the fundamental group of a surface is isomorphic to the fundamental group of a surface. Indeed, the following slightly more general theorem can be proved, but it is considerably weaker than Theorem 1' of [2].

THEOREM. Let F be the fundamental group of a surface S and let F be finitely generated. Let G be a group which contains F as a normal subgroup of finite index and which has the following properties:

(i) For each $g \in \mathfrak{G}$ the automorphism of \mathfrak{F} defined by $x \mapsto g^{-1}xg$ is induced by a homeomorphism of S.

(ii) If $g \in \mathfrak{G}$ and $g^{-1}xg = x$ holds for all $x \in \mathfrak{F}$, then $g \in \mathfrak{F}$.

(iii) If $x^a = y^b = (xy)^c = 1$ holds for $x, y \in \mathfrak{G}$ and $a, b, c \ge 2$, then x, y generate a cyclic subgroup of \mathfrak{G} .

Then \mathfrak{G} is isomorphic to a finitely generated discontinuous group of motions of the hyperbolic or euclidean plane.

I shall briefly sketch a proof of the Theorem which generalizes [1]. Let S be an orientable surface with finite genus and a finite number of holes and without boundary. We consider S as a Riemann surface. If the universal cover is holomorphically equivalent to the euclidean plane, everything can be proved in a similar way as in [2, Theorem 3]. Therefore we may assume that the universal cover is the hyperbolic plane H which we represent by the unit disk $\{z \in C \mid |z| < 1\}$ and the Poincaré model. The fundamental group of S acts on H as a group \mathfrak{F} of conformal transformations. We may assume that \mathfrak{F} contains only hyperbolic transformations except the identity. Then the methods of [1] can be applied: Each cyclic subgroup of \mathfrak{F} consists of motions with the same axis, and a maximal cyclic subgroup contains all elements preserving an axis. Therefore each automorphism of \mathfrak{F} induces a permutation of the axes of \mathfrak{F} and

AMS (MOS) subject classifications (1970). Primary 20F25, 20H10.

Key words and phrases. Fundamental groups of surfaces, fuchsian groups, group extensions.

of their base points, which lie on $\partial H = \{z \in C \mid |z|=1\}$. If the automorphism is induced by a homeomorphism of S (which corresponds to a \mathfrak{F} -invariant homeomorphism of H) the mapping of the set of base points can be extended to a homeomorphism of ∂H (this extends the homeomorphism of H to a homeomorphism of the closed unit disk). So \mathfrak{G} defines a group of permutations of the axes of \mathfrak{F} . For $g \in \mathfrak{G}$ and an axis A, denote by gA the image axis. An axis A is *simple*, if $gA \cap A \neq \emptyset$ for $g \in \mathfrak{G}$ implies gA = A. We may restrict ourselves to the case where the elements of \mathfrak{G} are induced by orientation preserving homeomorphisms of S. Now we can repeat the arguments of [1, pp. 51-78], in this more general situation and we obtain

LEMMA 1. If \mathfrak{G} admits a simple axis, then \mathfrak{G} is isomorphic to a finitely generated discontinuous group of motions of the hyperbolic plane H.

The criterion for the existence of a simple axis is the same as that in Nielsen [1, pp. 78–94]:

LEMMA 2. 6 admits a simple axis, if (iii) holds.

REMARK. If the group \mathfrak{G} contains elements x, y with $x^a = y^b = (xy)^c = 1$, $a, b, c \geq 2$, which generate a noncyclic subgroup \mathfrak{U} , then it must be proved that the above relations are defining relations for \mathfrak{U} (which I could not obtain in all cases) and that the index of \mathfrak{U} in \mathfrak{G} is "small". The conclusion in [1, pp. 99, lines 10-21], does not seem correct to me.

References

1. J. Nielsen, Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1943), 23-115. MR 7, 137.

2. H. Zieschang, On extensions of fundamental groups of surfaces and related groups, Bull. Amer. Math. Soc. 77 (1971), 1116–1119. MR 44 #4098.

Ruhr-Universitat Bochum, Institut fuer Mathematik, 463 Bochum, Postfach 2148, Germany