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We announce existence and smoothness theorems for invariant mani­
folds characterized by asymptotic stability at specified rates. Our theorems 
require roughly half of a hyperbolic structure, so various known results 
about stable and unstable manifolds are included as special cases. Even 
under hyperbolicity assumptions, however, our results give new infor­
mation about metric properties, invariant foliations, and asymptotic 
stability with asymptotic phase. Proofs will appear in [2]. 

1. Invariant sets with expanding structure. Let U and V be open 
subsets of a Cr manifold M, l ^ r ^ o o , and let F: U->V be a Cr diffeo-
morphism. A c [ / is called weakly overflowing invariant (under F) if 
A<=F(A). Let TF:TU->TVbt the map induced by F on tangent spaces. 
A subbundle £<= TM\A is called weakly overflowing invariant if £<= TF{E). 
We assume that all bundles have constant dimension. 

Suppose that A is compact, and that A and E are weakly overflowing 
invariant. Choose any vector bundle N^ TM\A9 complementary to E9 

and let TTE and irN be the projections corresponding to the splitting 
TM\A=E®N. For any m G A, and any v° e Em, w° e Nm, let 

v-
k = DF-\m)v\ w~k = 7rNDF-1c{m)w\ 

where DF-k(m):TMm-+TMF-k
{m) is the map induced by F~k. 

Choose a Riemannian metric for TM, and let | | be the corresponding 
norm. Define a*(m)=inf{a>0:|t;~fc|/afc->0 as k->co for all v°eEm}9 

p*(m)=mf{P>Q:[\v-k\l\w-k\]lpk^O as /c-^oo for all v° e Em, w°eNm}. 
The pair (A, E) is called an invariant set with expanding structure if 
a*(ra)<l , p*(m)<l for all m e A. This definition follows the form 
developed in [1]. 

LEMMA, a* and p* are constant on orbits and do not depend on the 
choice of N or the metric for TM. 

LOCAL EXPANDING FAMILY THEOREM. Let (A, E) be an invariant 
set with expanding structure. Then there is a family of compact manifolds 
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with boundary 

WgG(m) = WFoo(m) U dWgc(m), m e A, 

invariant in the sense that 

F-\wUm)) c WUF~\m)). 

WE
c(m) is Cr dijfeomorphic to a closed ball in the fiber Em, and is tangent 

to Em at m. WE
0G{m) depends continuously on m. 

Suppose now that U= V=M, and define 

WE(m) = Ü Fj{wf0C{F-\m))). 

It is easy to see that WE(m) is Cr diffeomorphic to Em9 and is tangent to 
Em at m. The family {WE(m):m e A} satisfies the invariance condition 

F-\WE(m)) = WE(F-\m)\ 

and we have the following theorem. 

METRIC CHARACTERIZATION THEOREM. Let d denote the geodesic 
distance in M. Suppose a * ( m ) < a ^ l and p*(m)</)^ l for all m e A. 
Then 

(i) Ifp G WE(m), then d(F-k(p), F"fc(m))/afc->0 as fc->oo. 
(ii) If p e WE(m), q <£ WE(m), and d(F~k(q), F'k(m))-^0 as &->oo, 

then [d(F~k(p), F-k(m))/d(F-k(q), F~k(m))]l pk->0 as &->oo. 

2. Expanding families over invariant manifolds. Let U and V be open 
subsets of the Cr manifold_M, 1 < > ^ oo, and let F: C/-+F be a Cr diffeo-
morphism. Suppose that A is a C1 compact manifold with boundary, 
properly embedded in M and weakly overflowing invariant under F\ 
Then also TA is weakly overflowing invariant under TF. Let / <= TM\A 
be a weakly overflowing invariant subbundle containing TA. Choose any 
complement / of TA in I, and any complement N of I in TM\A. Then 
TM\K splits as jTAe/eiV, with projections TTA, <JTJ, TTN. 

For any me A, and any v° e TmA, w° e Jm, x° e Nmy let 

v~k = DF~\m)v\ w~k = 7TJDF~k{m)w\ x~k = 7TNDF-\m)x\ 

Choose any metric for TM and let | | be the corresponding norm. Define 
a?(m)=inf{a>0: |wr-*|/a*->0 as k-+oo for all w° eJJ, 

Pt(m) = inf{/> > 0: [|Mr*|/|ir*|]/p* -+ 0 as k -> oo for all v° e TmA, w° eJJ, 

pt(m) = inf{/) > 0: [\w-k\l\x-k\]/P
k -+ 0 as k -> oo for all w° e Jm9 x° e NJ. 
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LEMMA, a*, pf and p% are constant on orbits o f F and do not depend 
on the choice of a metric for TM. If J' and N' are bundles such that 1= 
TA^J' and TM\A=TA&J'®N', then the corresponding functions are 
equal. 

LEMMA. If p*(m)<l for all m e A, there is a unique bundle E^I 
such that 1= TA®E and E is weakly overflowing under TF. 

The pair (A, I) is called an invariant manifold with expanding structure 
if a?(ra)<l , pi(m)<l, and p* (m)<l for all me A. 

EXPANDING MANIFOLD THEOREM. Let (A, ƒ) be an invariant manifold 
with expanding structure. Let_E be the bundle of the previous lemma, and 
let a* an£ p* be defined for (A, E) as in §1. Then 

(i) (A, E) is an invariant set with expanding structure. 
(ii) a* (m) = a* (m) for all m e A. __ 

(iii) If pf(m)<P = l and p%(m)<p^\ for all m e A, then p*(m)<p^l 
for all m e A. 

(iv) The fibers W^c (m) depend continuously on m. 
(v) ^ c ( m ) n ^ c ( m ' ) = 0 unless m-m'. 

(vi) W^c= UmeX ^i?c(m) ^ a C° weakly overflowing invariant manifold. 
(vii) Ifp e < c ( m ) , q e < c ( m ' ) , then 

d(F~k(p), F-k(m))ld(F-k(q), F-\m)) -> 0 as k -> oo, 

unless m=m'. 

As in §1, there is a global construction in case U= V=M. 

3. Asymptotic stability with asymptotic phase. Let U and V be open 
subsets of a C1 manifold M, and let F.U-+V be a diffeomorphism. 
Let A = A u 9 A be a manifold with boundary satisfying the overflowing 
invariance condition A c f ( A ) , and suppose A is asymptotically stable 
under F~x. 

We say that A has unique asymptotic phase if there is a neighborhood 
N of A such that for each p eN, there exists in m(p) e A such that 

(i) d(F-k(p),F-\m(p)))-+Oask-+oo; 
(ii) if m e A, m^m(p), then 

d(F~k(p)9 F-k(m(p)))/d(F~k(p)9 F~k(m)) — 0 as k -> oo. 

THEOREM. Let (A, TM\A) be an overflowing invariant manifold with 
expanding structure. Then the set W^ofthe Expanding Manifold Theorem 
is a neighborhood of F~1{A). Hence A is asymptotically stable with unique 
asymptotic phase. 
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When A is a compact invariant manifold satisfying the hypotheses of 
the perturbation theorem (Theorem 3) of [1], A and its unstable bundle 
form an invariant manifold with expanding structure. Hence the unstable 
manifold has an invariant foliation into expanding fibers, and A has 
asymptotic phase as a subset of its unstable manifold. 

4. Smooth dependence on m. The manifold Wf0Q is not even C1, in 
general. As in [1], the loss of smoothness is caused by attracting limit 
sets in A. A precise theorem along these lines will appear in [2]. 
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