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In this paper we shall discuss the integral solutions of the diophantine 
equation Y2+K=X5, where AT is a square-free positive integer. We shall 
prove the following: 

THEOREM. If the class number h of the quadratic field Q(j—K) is not 
divisible by 5, and if K^ 8L— 1, then the equation Y2+K=X5 has no nonzero 
integral solutions with the exceptions of K= 19, 341. 

In these cases the solutions will be as follows : 

(22434)2 + 19 = (55)5, 

(275964Ó)2 + 341 = (377)5. D 

The ideal equation [Y+J-K] • [Y-J-K\=X5 leads to finitely 
many equations [see e.g. [3]] of the form f (A, B)=m, where ƒ is a homo­
geneous polynomial of degree 5. 

The case Y+<J—K=a)5, where co is an integer in QQ—K) is reduced to 
solving y 2 =20X 4 +l . This was discussed by W. Ljunggren [2] and 
J. H. E. Cohn [1]. 
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