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In [5] P. R. Halmos called for an investigation of those nonnegative 
operators P with the property that the distance from P to a fixed operator 
T is the same as the distance of T to the set of nonnegative operators. 
Such a P is a "positive approximant" of T. Halmos asked for the prop
erties of such best approximating nonnegative operators when other 
norms besides the operator norm were used to compute distance. If 
T=B+iC, with B=B*, C=C*, then the formula |||r|||2=||52+C2|| 
defines a norm on the bounded operators with the pioperty that 

lirn^|imi|^w(r)^*i|7 , |i 
where w(T) denotes the numerical radius of T. The distance from T to 
the nonnegative operators is the same whether it is computed with the 
operator norm or with the new norm. A nonnegative operator which best 
approximates T in the new norm is a "positive near-approximant." 
This name is motivated by the facts that every positive approximant is a 
positive near-approximant and a positive near-approximant frequently 
turns out to be a positive approximant, although that is not necessarily 
the case. 

P. R. Halmos gave an ingenious argument which resulted in a device for 
computing the distance of T to the nonnegative operators, denoted 
<5(JT), and in a formula which defines a positive approximant of T for 
any T. If T=B+iC, with B=B*, C=C*, then the Halmos positive 
approximant is P0=£+(<52-C2)1/2 where ô=ô(T). In [1] we showed 
that P0 is absolutely maximal for the positive approximants of T7, that 
is P^P0 whenever P e éP(T) with âP{T) denoting the positive approxi
mants; we used this fact as a basis for constructing positive approximants. 
In [2] we showed that P0 is absolutely maximal for the positive near-
approximants of T, denoted &'(T)> and from this we constructed positive 
near-approximants. We have now carried this approach to the point of 
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determining much of the convex structure of the two convex sets 0*(T) 
and âP'(T), and it is these results which are described in this announcement. 
We denote the underlying complex Hilbert space by H and the range of 
the operator A is written AH. 

THEOREM 1. Let éP'(T) denote the convex set of positive near-approxi-
mants of the normal operator T and let H0 denote the subspace 

(P0H)~ O ((Ô2 - C2)H)~. 

If the dimension ofH0 is denoted by p then we have 

dim&'iT) = p2. 

Here all infinite cardinal numbers are identified. 

COROLLARY 1. The normal T has a unique positive near-approximant 
if and only if the closed span of the kernels ofP0 andof(ô2—C2) is all ofH. 

COROLLARY 2. Let £P(T) denote the convex set of positive approximants 
of T and let p denote the dimension of H0. Assume that either (i) or (ii) 
below holds: 

(i) T is normal, 
(ii) C and C2 have the same commutant where T—B+iC with B=B*9 

C=C*. 
Then we have dim 0>'(T)=dim 0>(T)=p2. 

In the event that T is normal the distance ô(T) is given by a simple 
formula, namely ô(T) = \\B_+iC\\, where T^B+iC, B=B*, C=C* 
and 2B_=(B2)1/2—B. Halmos first proved this with a matrix argument. 
In [1] we showed that T has a unique positive approximant if and only 
if every point of the spectrum of T has a distance of ô to the nonnegative 
reals. We can now give a very quick proof of both of these facts. Let 
s/ denote the C* algebra generated by T and let C(o(T)) denote space of 
continuous functions on the spectrum of T with the usual norm. The 
Gelfond transform, denoted T, gives an isometric isomorphism of si 
onto C(or(T)) and (Tr)(z)=z. (See paragraphs 4.30 and 4.31, pp. 93-94, 
of [4].) The positive part of the real part of T, denoted B+9 and the 
Halmos positive approximant belong to s/ and clearly the corresponding 
continuous functions are cp(z)=x and y)(z)=x+(ô2— y2)1/2, respectively, 
where z=x+iy with x and y real. By considering the right and left half 
planes separately one easily sees that 

||z -p(z)\\2 = supremum{(x_)2 + y2:z e a(T)} 

where p(z) is any nonnegative valued function continuous on a(T). By 
the spectral mapping theorem and the observation that B_+iC is a 
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normal operator we obtain ||z—/?(z)||^||^_+/C||. From this inequality 
it is immediate that ô(T)—\\B_+iC\\ and B+ is a positive approximant 
for T. 

One easily verifies that the distance from z to the nonnegative reals 
is d if and only if we have 

(*) -x__ + (d* - y2)m = 0. 

Since B+ is a positive approximant of T and a(T) is compact there is a 
point z0 in o(T) such that 

à = \z0 - ç>(z0)| = | - ( * o ) - + *>ol-

Consequently, if every point of (r(r) has a distance of d to the nonnega
tive reals then d=ô. One now sees that (*) above is equivalent to saying 
that <p(z) and tp(z) coincide, or B+ and P0 coincide. We have given an 
elementary argument in [2] to show that this implies 

0>\T) = 0>(T) = {P0}. 

On the other hand, if T has a unique positive approximant then P0 equals 
B+ and cp(z) coincides with \p(z). This is equivalent to the assertion that 
every point of a(T) has distance à to the nonnegative reals. 

The very commutative approach of the above two paragraphs produces 
very little beyond the above proofs. The one further fact that can be 
deduced by this approach is that £?(T), for T a normal operator, is a 
finite dimensional convex set only if a(T) has only finitely many points 
with distance to the nonnegative reals not equal to ô. In contrast the very 
elaborate constructive approach which produced Theorem 1 and its 
corollaries yields further information. An important preliminary fact 
is that £P(T) and 0*'(T) are both compact in the weak operator topology 
and consequently each is the closed convex hull of its extreme points by 
the Krein-Milman Theorem. 

THEOREM 2. Assume that T is normal and that H0 (as defined in Theorem 
1) is finite dimensional. Define the operator A0 by the formula 

2A0~P0 + R- \P0 - R\ 

where i£=2((52--C2)1/2. Then A0, P0 and C commute and each is reduced 
by H0. Let {el9 • • • , ev} be an orthonormal basis for H0 which simul
taneously diagonalizes the restrictions ofA0, P0 and C; let Q be the orthog
onal projection onto e^for somej=l9 - • • ,/?. Then P0—A0Q is an extreme 
point of each of the sets 0>(T) and &\T). 

COROLLARY. Assume that T is normal and that H0 is a one dimensional 
subspace. Let f0 be a unit vector in H0 and let A0 and Ax be defined by the 



316 RICHARD BOULDIN 

equations 

A0 = min{(P0/0,/0), <2(«« - C*f%, f0)}9 A, = <-, f0)l0f0. 

Then 0*(T) and 0>\T) coincide with the convex hull of P0 and PQ—AX\ 
consequently we have 

0>\T) = 0>(T) = {P0 - UX:X e [0, 1]}. 

The detailed proofs of these results will appear elsewhere. 
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