PROPERTIES OF THREE ALGEBRAS RELATED TO L_{p}-MULTIPLIERS ${ }^{1}$

BY MICHAEL J. FISHER*
Communicated by J. L. Kelley, July 2, 1973

1. Introduction. In this paper we shall announce several properties of certain algebras which arise in the study of L_{p}-multipliers; detailed proofs will be given elsewhere. Let G be a locally compact abelian group and let Γ denote its dual group. Let $L_{p}(\Gamma)$ denote the space of p-integrable functions on Γ with respect to Haar measure, and let q denote the index which is conjugate to p. Let

$$
A_{p}(\Gamma)=\left[L_{p}(\Gamma) \hat{\otimes} L_{q}(\Gamma)\right] / K
$$

where K is the kernel of the convolution operator $c: L_{p} \hat{\otimes} L_{q}(\Gamma) \rightarrow C_{0}(\Gamma)$ by $c(f \otimes g)(\gamma)=(f * g)(\gamma) . A_{p}(\Gamma)$ is the p-Fourier algebra which was introduced by Figa-Talamanca in [6] where it was shown that $A_{p}(\Gamma)^{*}$ is isometrically isomorphic to $M_{p}(\Gamma)$, the bounded, translation invariant, linear operators on $L_{p}(\Gamma)$. Herz [11] showed that $A_{p}(\Gamma)$ is a Banach algebra under pointwise multiplication; it is known that $A_{2}(\Gamma)=A(\Gamma)=L_{1}(G)^{\wedge}$ and that the inclusions $A_{2}(\Gamma) \subset A_{p}(\Gamma) \subset A_{1}(\Gamma)=C_{0}(\Gamma)$ are norm decreasing if $1<p<2$; see [5], [6], [11] for the basic properties of $A_{p}(\Gamma)$. Let $B_{p}(\Gamma)$ denote the algebra of continuous functions f on Γ such that $f(\gamma) h(\gamma) \in A_{p}(\Gamma)$ whenever $h \in A_{p}(\Gamma)$. The multiplier algebra $B_{p}(\Gamma)$ is a Banach algebra in the operator norm. We have studied $B_{p}(\Gamma)$ in [8], [9]. Fix p in $1<p<2$.

Regard $L_{1}(\Gamma)$ as an algebra of convolution operators on $L_{p}(\Gamma)$ and let $m_{p}(\Gamma)$ denote the closure of $L_{1}(\Gamma)$ in $M_{p}(\Gamma)$. The first result of this paper says that $B_{p}(\Gamma)$ is isometrically isomorphic to the dual space $m_{p}(\Gamma)^{*}$. In the second result, we use certain properties of $B_{p}(\Gamma)$ to give a theorem of Eberlein type for $M_{p}(\Gamma)$. In the final section of the paper, we use

[^0]$m_{p}(\Gamma)$ to represent $M_{p}(\Gamma)$ as the multiplier algebra of a certain subalgebra of $M_{p}(\Gamma)$. For the case when Γ is a compact group, Theorem 1 was proved in [1].

Our work has been influenced by Theorems 1.1 and 1.2 of [12]. There McKilligan studied the multiplier algebra B of a commutative, semisimple, Banach algebra A which contains an approximate identity of norm one. $A^{* *}$ is equipped with the Arens product (o) and B is isometrically embedded in $\left(A^{* *}, \circ\right)$ by the mapping $T \rightarrow T^{* *}(j)$ where j is the right identity in $A^{* *}$; see [2] for the basic properties of the Arens product. Thus if $T \in B$ and if $\left\{e_{\alpha}\right\}$ is the approximate identity in A, then

$$
T^{* *}(j)(F)=\lim _{\alpha} F\left(T\left(e_{\alpha}\right)\right)
$$

for every functional $F \in A^{*}$.
We shall not distinguish between $M_{p}(\Gamma)$ and $A_{p}(\Gamma)^{*}$. If $H \in L_{1}(\Gamma)$, let $* H$ denote the corresponding convolution operator on $L_{p}(\Gamma)$. If $\psi \in$ $m_{p}(\Gamma)^{*}$, let $\|\psi\|_{*}$ denote the norm of ψ. If $h \in A_{p}(\Gamma),|h|_{p}$ denotes its norm; if $f \in B_{p}(\Gamma),\| \| f \|_{p}$ is the operator norm; and if $T \in M_{p}(\Gamma),\|T\|_{p}$ is the operator (or functional) norm of T. An approximate identity $\left\{E_{\alpha}\right\}$ in $L_{1}(G)$ which consists of normalized characteristic functions of compact, symmetric neighborhoods of the identity is referred to as a standard approximate identity. The corresponding net $\left\{\hat{E}_{a}\right\}$ in $A_{2}(\Gamma)=A(\Gamma)$ is also referred to as a standard approximate identity.

After we had submitted this paper for publication, Professor Carl Herz told us that he had given a different proof of Theorem 1 in 1970 for amenable groups. N. Lohoué, C.R. Acad. Sci. Paris 272 (1971) and 273 (1971), refers to Herz's result as presented at Orsay in June, 1970.

2. Dual space representation.

Theorem 1. $\quad B_{p}(\Gamma)$ is isometrically isomorphic to $m_{p}(\Gamma)^{*}$ by the map $\varphi \rightarrow \tilde{\varphi}$ when $\tilde{\varphi}(* H)=\int_{\Gamma} \varphi(\gamma) H(\gamma) d \gamma$ for all $H \in L_{1}(\Gamma)$.

Use Theorems 1 of [6] and [7] to show that $h \rightarrow \tilde{h}$ gives an isometric embedding of $A_{p}(\Gamma)$ into $m_{p}(\Gamma)^{*}$. Use a standard approximate identity to extend this embedding to $\boldsymbol{B}_{p}(\Gamma)$. Conversely, let $\tilde{\psi} \in m_{p}(\Gamma)^{*}$; then there is a bounded measurable function $\psi_{0}(\gamma)$ such that

$$
\tilde{\psi}(* H)=\int_{\Gamma} \psi_{0}(\gamma) H(\gamma) d \gamma
$$

Define

$$
\psi_{\alpha \beta}(\gamma)=\left(\psi_{0} \hat{E}_{\alpha}\right) * f_{\beta}(\gamma)
$$

when $\left\{E_{\alpha}\right\}$ and $\left\{f_{\beta}\right\}$ are standard approximate identities in $L_{1}(G)$ and $L_{1}(\Gamma)$ respectively. Then $\left|\psi_{\alpha \beta}\right|_{p} \leqq\|\tilde{\psi}\|_{*}$ and $\left\{\psi_{\alpha \beta}\right\}$ converges to ψ_{0} in the weak*
topology of $L^{\infty}(\Gamma)$. Let \mathfrak{B}_{p} denote the algebra of bounded measurable functions ψ on Γ for which $M(\psi)(x, y)=\psi\left(x y^{-1}\right)$ is a multiplier on $L_{p} \hat{\otimes} L_{q}(\Gamma)$. By following Eymard [5], one shows that $\mathfrak{B}_{p}(\Gamma)=B_{p}(\Gamma)$. Let $E_{q}=L_{p} \otimes_{\lambda} L_{q}(\Gamma)$, the completion of $L_{p} \otimes L_{q}(\Gamma)$ with respect to the least cross norm. By a theorem of Grothendieck [10, p. 122], $E_{q}^{*}=$ $L_{p} \otimes L_{q}(\Gamma)$. Using this fact one shows that $M\left(\psi_{\alpha \beta}\right)$ converges to $M\left(\psi_{0}\right)$ in the weak* topology of $L_{p} \hat{\otimes} L_{q}(\Gamma)$ and that $\psi_{0} \in \mathfrak{B}_{p}(\Gamma)$.

By letting $m_{p}(\Gamma)^{*}=M_{p}(\Gamma)^{*} / m_{p}(\Gamma)^{\perp}$ have the quotient Arens product, one sees that $\varphi \rightarrow \tilde{\varphi}$ is an algebra isomorphism as well.
3. Eberlein's theorem. Use McKilligan's representation for multipliers to regard a function $f \in B_{p}(\Gamma)$ as a functional $\tilde{f} \in M_{p}(\Gamma)^{*}$.

Theorem 2. Let $M_{p}(\Gamma)_{c}$ denote the L_{p}-multipliers with continuous Fourier transforms. An operator $T \in M_{2}(\Gamma)_{c}$ is in $M_{p}(\Gamma)_{c}$ if and only if there is a constant $M \geqq 0$ such that for every finite set $\left\{a_{h}\right\}$ of complex numbers and every equinumerous subset $\left\{g_{k}\right\} \subset G$, the Fourier transform \hat{T} of T satisfies

$$
\left|\sum_{k=1}^{n} a_{k} \hat{T}\left(g_{k}\right)\right| \leqq M| |\left|\sum_{k=1}^{n} a_{k} \tilde{g}_{k}\right| \|\left.\right|_{p} .
$$

When $T \in M_{p}(\Gamma)_{c},\|T\|_{p}$ is the least constant M for which the inequality holds.

If $T \in M_{p}(\Gamma)_{c}$, it follows from McKilligan's representation that $\tilde{g}(T)=$ $\hat{T}(g)$ for $g \in G$, so that the inequality holds for some $M \leqq\|T\|_{p}$. By Saeki's Theorem 4.3 of [14], $\|T\|_{p}$ is the least constant M for which the inequality holds. If $T \in M_{2}(\Gamma)_{c}$ satisfies the inequality, so does $T_{\alpha \beta}=$ $*\left(\hat{f_{\beta}} T\left(E_{\alpha}\right)\right)$ when $\left\{f_{\beta}\right\} \subset L_{1}(G)$ and $\left\{E_{\alpha}\right\} \subset L_{1}(\Gamma)$ are standard approximate identities. Since $\left\|T_{\alpha \beta}\right\|_{p} \leqq M$, the net $\left\{T_{\alpha \beta}\right\}$ has a weak* convergent subnet $\left\{T_{\delta}\right\}$ in $M_{p}(\Gamma)$. Since $A_{2}(\Gamma)=A(\Gamma)$ is dense in $A_{p}(\Gamma)$. it follows that $T=$ $\lim T_{\delta}$ is in $M_{p}(\Gamma)$.

From [14], a function $F \in L^{\infty}(G)$ is said to be regulated if there is an approximate identity $\left\{E_{\alpha}\right\}$ of norm one in $L_{1}(G)$ such that $\left\{F * E_{\alpha}\right\}$ converges pointwise and in the weak* topology of $L^{\infty}(G)$ to F. Theorem 2 can be extended so as to apply to operators with regulated Fourier transforms.

The separation theorem [3, p. 417] for compact convex sets and Theorem 2 now imply

Theorem 3. If $f \in B_{p}(\Gamma)$, there is a net $\left\{f_{\beta}\right\}$ in the span of G in $B_{p}(\Gamma)$ such that $\left\|\left\|f_{\beta}\right\|_{p} \leqq\right\| f \|_{p}$ and such that $\left\{f_{\beta}\right\}$ converges to f in the weak* topology of $B_{p}(\Gamma)$.
4. M_{p} as a multiplier algebra. Use multiplication of operators to regard $M_{p}(\Gamma)$ as an algebra over the ring $m_{p}(\Gamma)$. In particular, $M_{p}(\Gamma)$ is an $m_{p}(\Gamma)$-module. It follows from the general form of Cohen's factorization theorem [13, p. 453] that the m_{p}-essential submodule of $M_{p}(\Gamma)$ is

$$
M_{p} m_{p}(\Gamma)=\left\{K \in M_{p}(\Gamma) \mid K=U T, U \in M_{p}(\Gamma), T \in m_{p}(\Gamma)\right\} .
$$

$M_{p} m_{p}(\Gamma)$ is a Banach algebra in the operator norm and a standard approximate identity in $L_{1}(\Gamma)$ is an approximate identity of norm one in $M_{p} m_{p}(\Gamma)$.

Theorem 4. $\quad M_{p}(\Gamma)$ is the algebra of multiplier operators on $M_{p} m_{p}(\Gamma)$.
A weak* compactness argument is used.
$M_{p} m_{p}(\Gamma)$ plays the role in $M_{p}(\Gamma)$ that $L_{1}(\Gamma)$ plays in $M(\Gamma)$.

References

1. G. F. Bachelis and J. E. Gilbert, Banach spaces of compact multipliers and their dual spaces, Math. Z. 125 (1972), 285-297.
2. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 26 \#622.
3. N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math. vol. 7, Interscience, New York, 1958. MR 22 \#8302.
4. W. F. Eberlein, Characterizations of Fourier-Stieltjes transforms, Duke Math. J. 22 (1955), 465-468. MR 17, 281.
5. P. Eymard, Algèbres A_{p} et convoluteurs de L_{p}, Sem. Bourbaki 1969/1970, SpringerVerlag Lecture Notes No. 180, Berlin, 1971.
6. A. Figa-Talamanca, Translation invariant operators on L_{p}, Duke Math. J. 32 (1965), 495-501. MR 31 \#6095.
7. A. Figa-Talamanca and G. I. Gaudry, Density and representation theorems for multipliers of type (p, q), J. Austral. Math. Soc. 7 (1967), 1-6. MR 35 \#666.
8. M. J. Fisher, Recognition and limit theorems for L_{p}-multipliers, Studia Math. 50 (1974), (to appear).
9. -, Multipliers and p-Fourier algebras, Studia Math. (submitted).
10. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763.
11. C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82. MR 42 \#7833.
12. S. A. McKilligan, On the representation of the multiplier algebras of some Banach algebras, J. London Math. Soc. 6 (1972), 399-402.
13. M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443-491. MR 36 \#6544.
14. S. Saeki, Translation invariant operators on groups, Tôhoku Math. J. (2) 22 (1970), 409-419. MR 43 \#815.

Department of Mathematics, University of Montana, Missoula, Montana 59801

[^0]: AMS (MOS) subject classifications (1970). Primary 43A22; Secondary 43A15, 46J10, 47D15.

 Key words and phrases. p-Fourier algebra, multipliers, dual space representation, Eberlein's theorem.
 ${ }^{1}$ Research supported in part by the National Science Foundation grant GP-24574.

 * This paper is being published posthumously. Professor Michael J. Fisher died August 27, 1973. However, all correspondence concerning this paper should be addressed to the author at the address below.

