A DEGREE FOR NONACYCLIC MULTIPLE-VALUED TRANSFORMATIONS

BY D. G. BOURGIN

Communicated by Mary Ellen Rudin, July 2, 1973

The objective of this note is the definition of a degree generalizing that of Leray-Schauder [1] for certain possibly nonacyclic set-valued compact transformations of a ball in an arbitrary Banach space. The degree definition achieved extends that of [3] and depends on the material in [2], [3], [4] and [5]. It is new even for the finite-dimensional case.

Let E be a Banach space. Write D for the closure of a convex open set and \dot{D} for its boundary. Denote by E_N an N-dimensional subspace of E and by D_N and \dot{D}_N the intersections $E_N \cap D$ and $E_N \cap \dot{D}$, respectively. (We tacitly assume E is infinite dimensional but the finite-dimensional consequences amount to identification of E and some E_N .)

Denote the r-dimensional singular set by $\sigma_r = \{x | H^r F(x) \neq 0\}$ where the cohomology groups are assumed to be the Alexander Spanier reduced groups with integer coefficients. The total singular set is denoted by $\sigma = \{1\}_r \sigma_r$.

Let p denote the effective bound for nonacyclicity, namely

$$p = 1 + \sup_{r} \{r + \dim \sigma_r \mid \sigma_r \neq \varnothing \},$$

where dim σ_r is the maximum covering dimension for finite covers of subsets of σ_r which are closed in D.

The transformation F is admissible if, besides the earlier restrictions, (a) F is fixed point free on \dot{D} , (b) $\sigma_r = \emptyset$ except for a finite set of indices, (c) σ_r is contained in a finite subspace E_S , and (d) for $x \in \sigma$, $H^*F(x)$ is

AMS (MOS) subject classifications (1970). Primary 47H10, 54C60, 54H25.

Key words and phrases. Set valued transformations, Leray-Schauder degree, Banach space, Alexander cohomology.

finitely generated. Conditions (a)-(d) are obviously maintained when F is replaced by F_N and D_N , \dot{D}_N and E_N replaces D, \dot{D} and E.

Write f=I-F. It is easy to see that for some symmetric convex open set U about θ , f(D) is disjunct from U. Hence, arguing from a partition of the identity subordinate to an open cover α of cl(F(D)), there is an E_N depending on α for which $N \ge \max(S, p+2)$, and $Q_N : cl(F(D)) \to E_N$ for which $z=Q_N z+u$, $u \in U$, $z \in cl(F(D))$.

Write

$$f_N = I_N - Q_N F_N, \quad f_N = f_N \mid \dot{D}_N.$$

Let p_N , q_N be the projections of $\Gamma(F_N)$ on D_N and on $F(D_N)$ and write \dot{p}_N , \dot{q}_N when \dot{F}_N , \dot{D}_N replace F_N , D_N . Finally define

$$\dot{T}_N = (p_N - Q_N q_N) \mid \Gamma(\dot{F}_N).$$

The induced homomorphisms on the (N-1)-dimensional cohomology groups are indicated as usual by an upper asterisk, thus f_N^* , p_N^* , T_N^* .

LEMMA. For an admissible F, $f_N^* = \dot{p}_N^{*-1} \dot{T}_N^*$ is a homomorphism on $H^{N-1}(S^{N-1} \times K)$ to $H^{N-1}(\dot{D}_N)$ where K is a closed interval and $\dot{p}_N^*(N-1)$ is an isomorphism [4], [5].

Let γ^{N-1} be a generator of $H^{N-1}(S^{N-1}\times K)$ which, by the deformation retraction induced isomorphism r^* , can be identified with a generator of $H^{N-1}(S^{N-1})$. Let γ_{N-1} be a generator of $H_{N-1}(S^{N-1})$ where the Kronecker index of γ^{N-1} and γ_{N-1} is 1.

Definition. The relative degree d'_N is defined as

$$d'_{N} = \varepsilon (\bigcap \gamma_{N-1}) f_{N}^{*} \gamma^{N-1}$$

where ε is the augmentation homomorphism $H_0(S^{N-1}) \rightarrow J$.

THEOREM. d'_N is an integer independent of the choice of E_N , U, Q_N (subject to their defining restrictions).

Hence our desired degree is d'_N and is henceforth denoted by d[f]. The degree has the following critical properties.

THEOREM. For admissible F if $d[f] \neq 0$, F admits a fixed point.

THEOREM. If a homotopy h exists satisfying the same conditions as an admissible transformation and if $F=h(\ ,0)$ and $F_1=h(\ ,1)$, then $d[1-F]=d[1-F_1]$.

THEOREM. If F is the constant map $D \rightarrow x_0 \in D \cap \dot{D}^-$ then d[f] = 1.

The restriction to convex domains can be weakened. For instance

THEOREM. Let A be a deformation retract of D with retracting map r.

Suppose the interior of A is nonempty. If F is admissible on A to E then d[f] can be defined to satisfy the properties enunciated in the preceding theorems.

Details will be published elsewhere.

BIBLIOGRAPHY

- 1. J. Leray Schauder, *Topologie et equations functionelles*, Ann. Sci. Ecole Norm. Sup. 3 (51) (1934), 45-78.
- 2. D. G. Bourgin, Fixed points and saddle points, Notices Amer. Math. Soc., Abstract #72 T-9171.
- 3. —, Cones and Vietoris-Begle type theorems, Trans. Amer. Math. Soc. 174 (1972), 155-183.
 - 4. —, Fixed point and min max theorems, Pacific J. Math 45 (1973), 403-412.
- 5. E. G. Skljarenko, Some applications of the theory of sheaves in general topology, Uspehi Mat. Nauk 19 (1964), no. 6 (120), 47-70=Russian Math. Surveys 19 (1964), no. 6, 41-62. MR 30 #1490.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 77004