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This note is a brief report on some research conducted by the authors 
in 1971. A complete report on this same research is scheduled to appear 
in a separate article [2]. 

Let ƒ be a given function continuously mapping the real line R into 
itself. Let A be a given nonnegative real number. Let </>: [0, TT]-+R be any 
C^-smooth function such that </>(0)=<£(7r)=0. We shall be discussing the 
following problem. Find a function u continuously mapping the domain 
{(x, 0 : 0=*= 7 r > 0^t< + oo} into R such that (i) the partial derivative 
ux is defined and continuous on [0, TT]X [0, +oo); (ii) the partial deriva­
tives ut and uxx are defined and continuous on [0,7r]x(0, +CX>); (iii) u 
satisfies the equations 

(la) ut(x91) = uxx(x, t) + 2f(u(x, 0) (0 ^ x ^ TT, 0 < / < + oo) 
(lb) w(0, t) = u(n, 0 = 0 (0 < t < + oo) 
(lc) u(x, 0) = (j>(x) (0 = x = TT). 

By a solution of (1) we mean a function u having the properties just 
specified. 

Our goal in studying (1) is to determine the asymptotic behavior of its 
solutions u as f->+ oo. We shall discuss this asymptotic behavior in terms 
of bifurcation and stability phenomena exhibited by (1). 

Other authors have studied this same type of problem for parabolic 
partial differential equations. Specifically, we mention the works by 
Keller and Cohen [7] and by Sattinger [11], [12]. The basic tool in these 
papers is the maximum principle for parabolic and elliptic partial differ­
ential equations. We also mention a recent paper by Auchmuty [1] in 
which the fundamental approach is the use of Liapunov methods. Our 
own work [2] to be described here is also based on Liapunov methods. 

In our investigation we assume that/satisfies the following hypotheses: 
(Hx) ƒ is a C2-smooth function mapping of R into itself. 
( H 2 ) / ( 0 ) = 0 a n d / ' ( 0 ) > 0 . 
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(H 3 ) l imsup ,^ + T O | - y (^0 . 
(H4) sgnƒ"(£)= - s g n I for all £ e R. 
In that which follows we shall let X denote the space of all C^-smooth 

functions </>: [0, TT]-+R such that </>(O)=0(7r)=O. On X we impose a norm 
|| ||i by setting | |^| |1=sup{|^ /(jc)|:0^JC^TT} for all ( ^ e l J i s a Banach 
space under || l^. 

It can be shown that, for any </> e X and A G [0, + oo), Equations (1) 
have a unique solution u(cf>, X) defined on [0, TC] X [0, + oo). For any 
<f> 6 X, X e [0, + oo), x e [0,IT], and t s [0, + oo), we can let u{x, t;cf>, X) 
denote the value of u((/>, X) at (x, 0- With this in mind, we can define, 
for any À e [0, +oo), a nonlinear semigroup {Uk(t)} on X by setting 
Ux(t)(/)=u(' ,t;<f>,X) for all <f> e X and t e [0, + oo). It can be shown that 
{Ux(t)} is strongly continuous on X. 

Let A e [0, +oo). By an equilibrium solution of (1) (corresponding 
to X) we mean a function u0 G X such that Ui(t)u0=u0 for all f G [0, + oo). 
By virtue of (H2), the origin <£0=0 in X is an equilibrium solution of (1) 
for every X e [0, + oo). 

To discuss the existence of other equilibrium solutions for (1) we 
introduce the linearized steady-state problem 

v"(x) + tf'(0)v(x) = 0 (0 ^ x ^ TT) 
w i>(0) = Ü(TT) = 0. 

Taking into account (H2), we see that (2) has eigenvalues An=def n2lf'(0), 
n^l, and that 0<X1<,X2<' ' %<hn<- • •. We are now ready to state our 
first theorem. 

THEOREM 1. For any integer n^.1 and any number A G (Xn, +oo), 
Equations (1) /zdwe a unique pair of equilibrium solutions u*(X) such that (i) 
Wn(A) /zâtf w + 1 simple zeros x^(X), x*(X), • • • , x*(A) m [0, 7r] with 

0 = xf(A) < xftA) < < x*(A) = TT; 
(ii) ( —l)aw^(x; A)^0 /or each integer q=0, 1, • • • , n — \ and each x G 
(x^(X), x^+1(À)). Furthermore, the mapping Ah->wJ(A) from (Xn, +00) into 
X is continuous on (Aw, + 00), and «*(A)->0 as A->Aw, #«rf ||w»(A)||i->+ 00 
5̂* A— +̂ 00. Finally, f or any À e [0, +00), Equations (1) Aaye «0 equilibrium 

solutions other than the zero solution w0=0 and those elements u*(X), n^.1, 
such that Xn^X. 

The assertion w^(A)->0 as X~^Xn has the obvious geometric interpreta­
tion that the pair u*(X) bifurcates from the origin w0=0 as À increases 
from Xn. 

The existence of u^(X) for Equations (1) can be easily deduced from a 
general result due to Crandall and Rabinowitz [3, p. 1084]. However, 
that same result does not guarantee the uniqueness of u„ (X) stated in 
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Theorem 1. Our proof in [2] for Theorem 1 is based on phase-energy 
methods. 

Now we state another theorem. 

THEOREM 2. For any <f>eX and any Xe [0, +oo), there exists an 
equilibrium solution w0(</>, X) of (I) such that UÀ(t)<f)-+u0(<l>, X) as t->+co. 

The question arises, given </> e X and X e [0, +oo), to which of the 
equilibrium solutions described in Theorem 1 is w0(</>, X) equal? A partial 
answer to this query is given in the following theorem. 

THEOREM 3. For any Xe [0, Xx], the zero solution u0=0of(l)is globally 
asymptotically stable in the sense of Liapunov. In particular, f or each </> e X 
and X e [0, Xx], we have || ^(O^lli—*0 as t-*+ oo. For any X e (Xl9 + oo), 
the zero solution w0=0 of (1) is unstable. For any Xe [Xl9 +oo), the solu­
tions uf(X) are each asymptotically stable in the sense of Liapunov. Finally, 
for any integer n^.2 and any Xe [Xn, +oo), the solutions u*(X) are each 
unstable. 

We remark that the stability properties of uf (X) and w0=0 asserted in 
Theorem 3 can be obtained using methods developed by Sattinger (see 
[11, pp. 992-993]). 

Our proofs for Theorems 1-3 appear in [2]. Now we shall briefly sketch 
these proofs. 

Our approach to studying Equations (1) is to interpret (1) as a dynamical 
system on X and then to apply certain methods associated with the Lia­
punov theory of stability. The methods we have in mind are set forth in 
[4], [5] and [9] and are often referred to as the invariance principle in 
stability theory. 

An essential tool in our use of the invariance principle is the following 
Liapunov functional : 

(3) Vk{$) =Jo ( i f (xf - AJo f(S)dSJdx (<£GX,AG[0 , -too)). 

For each X e [0, +oo), Equation (3) defines a functional Vk mapping X 
into R. For any cf>e X and X e [0, + oo), it can be shown that 

(4) Vx(Ux(t)4>) = -j\t(x91; & X)\2 dx (t > 0). 

Consider any <f> eX and Xe [0, + oo). Using V, one can show that 
u{<j>, X) has a nonempty compact connected invariant co-limit set œ(<j>, X) <= 
X. Here, one also uses the invariance principle referred to two paragraphs 
above. That same principle together with Equation (4) tells us that any 
element in œ((f>, X) must be an equilibrium solution of (1). 
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Therefore, one now seeks the equilibrium solutions of Equations (1). 
This leads us to study the two-point boundary-value problem 

. u"{x) + Xf{u{x)) = 0 ( 0 ^ X ^ T T , 0 ^ A < + O O ) 
w w(0) = U(TT) = 0. 

Our results concerning (5) are stated in Theorem 1. In particular, we see 
that, for any X e [0, +oo), each equilibrium solution of (1) is isolated 
in X. Hence, for any <j>eX and X e [0, + oo), the set co(</>, X) consists of 
exactly one equilibrium solution of (1). From this there follows Theorem 2. 

Theorem 3 is established using arguments from the classical theory 
of calculus of variations. We shall not attempt to describe these arguments 
here. 
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