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It is the purpose of this note to study the singularities of the ^-matrix 
and Green's function associated with the operators considered in [ l ] - [ 3 ] . 
As will be seen, there are a countable number of branch points, as well as a 
countable number of different ^-matrices associated with these operators. 
In this respect, these results differ considerably from those drawn from 
quantum mechanical scattering2 and the exterior problem (see e.g. [4] 
and [5]). 

1. Preliminaries. Let S denote the semi-infinite cylinder in RN, 
Af-dimensional Euclidean space (N ^ 2), with arbitrary bounded, smooth 
N — 1 dimensional cross-section /. Thus S consists of the points x = 
((x1? . . . , Xjy-i), xN) = (x, xN), where x e / and xN ^ 0.3 Let Q denote 
the domain with smooth boundary Q, obtained from S by perturbing a 
finite part of S. Thus Q = S for xN ^ xN for some fixed xN > 0. 

We now define the operators A0(A) by —A acting in L2(S) (L2(Q)) and 
associated with zero Dirichlet boundary conditions on S(Ù). Let Ax 

denote the corresponding operator defined in L2(l) and let {vw} and 
rjn(x) denote a complete set of eigenvalues (in increasing order) and 
corresponding orthonormal eigenfunctions for At. Let Ac denote that 
part of A orthogonal to all of its eigenvalues, A denote the set of eigenvalues 
of A and A' = A u {v„}. 

It was shown in [1] that a complete set of generalized eigenfunctions 
for A0 and Ac are given by 

w„°(x; X) = (2/TI)1/2 sin(2 - v j ^ x ^ x ) , X $ {v„}, 
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and 
w~(x; X) — w°(x; X) + v~(x; X), X $ A', 

where 
m 

»-(*;*) = £ C(A)exp{-*U - v..)1'2 x^Ax) 

(11) 

n' = m + 1 

for xN ^ xN and A e (vm, vm+1), ( )1/2 denoting the positive square root. 
Another complete set of generalized eigenfunctions,ww

+(x; X) = w%(x;X) + 
i>*(x; A), for Ac are defined analogously with exp{ — i( )1/2} replaced by 
exp{/( y^andCWbycïiX). 

It was proven in [3] that the ^-matrix, ^m(X), associated with A0 and 
A at the point À e (vm, vm+1), X $ A, is given by the matrix 

(1.2) ym(X) = ƒ„ + Tm{X\ 

where Im is the identity matrix of rank m and 

Tm(X) = (tn,AV) with 
(1.3) 

tnAV = ~(2n)ll2icn
nr(X), n,n' = 1, . . . , m. 

Note that the rank m of ^m(A) varies with X. 
It follows from the arguments of [6] that Green's function, GQ (X, y; X), 

for the operator A0 — X is given by 

sin(A - v„)1/2xwexp{-«U - v„)1/2yw} 
'Jr, 

( 1 4 ) for xN < yN 

£ exp{-/(A — v.)1/2x,v} . ,, , . „ . . , , „ , 
= I - ^ T T ,1/2 s m ( A - v„)1/2)^„(x)»7„(i5), 

for xN > yN, 

where x, y e S and Im(A — v„)1/2 < 0, n = 1, 2, . . . . In view of (1.1) and 
(1.4), it is natural to define the infinitely sheeted Riemann surface R^, 
obtained by making each point vn a branch point of order one. By 
r„ l f . . . , nk (

cKrMl,..., Mk)), we shall mean that sheet of jRœ consisting of those 
points X for which 0 < arg(A — vn) < In (0 S arg(A — vn) < 2n) for 
n = ni9 . . . , nk and — 2n< arg(A — vn) < 0 ( — In S arg(/l — vn) < 0) 
for all remaining n. The "physical sheet", T0 (cl(ro)), shall consist of those 
Xsatisfying — 2n < arg(>i — vn) < 0( — 2n ^ arg(2 — vn) < 0),n = 1,2, 

It can be easily seen that G$ (x, y; X), defined initially on T0 has an 
analytic continuation onto all of R^ in the following sense. Consider 
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r,M, m ^ 1, suppose ^ = [a, b~\ c (vJ? v J+1) for an arbitrary J ^ m and 
set K = (À — vm)1/2 for each À e i Then the function GQ(X, y\ K) = d f 

GQ(X, y; X) is an analytic function of K for each K e I m K < 0 u 
[(a - v j 1 / 2 , (6 - v j 1 / 2 ] u Im K > 0 such that Im(K2 + vm - v„)1/2 g 
0 for n # m. Hence GQ (X, J>; 2) has an analytic continuation from T0 

onto rm across <ê. We define an analytic (meromorphic) continuation of a 
complex or operator-valued function F(X) from an arbitrary sheet of R^ 
onto any other sheet in an analogous fashion. If such an analytic (mero­
morphic) continuation exists for each sheet of Rœ, we say that F(X) is 
analytic (meromorphic) on R^. We shall say that A0 e R^ is a pole of 
F(X) if K0 = (À0 — vm)1/2 is a pole of F{K) = F(K2 + vm) corresponding 
to any of the count ably many possible continuations described above. 

2. Meromorphic continuations. Let G~(x, y; X) denote Green's function 
for the operator A — I, where x , y e Q and X eF0. 

THEOREM 1. (a) G~(x,y;X) has a meromorphic continuation from T0 

onto all of R^. (b) Suppose & c (vw, vm+1) - A. Then £fm(X) and each 
w~(x; X), n = 1, . . . , m, has a meromorphic continuation from & onto 
each sheet, Tnunk, of R^ across (vm9 vw+1), provided0 S nl9 . . . , nk ^ m. 

We shall outline the proof of Theorem 1 as follows. Set y = Ù — Ù n S, 
7 = closure of y and £ = C(y). Thus rç(x) G 5 if rj(x) is a continuous function 
defined on y. We set \\rj\\B = maxX6^ |rç(x)|. Note that y is compact by our 
definition of Q. We define the integral operator Tk by 

Ttf(x) = 2 n(y) — GQ (X, y; X)dSy
4 

for each rj(x) e B.xey and A e R^. 

LEMMA 1. Tx is a compact, analytic B-valued function of I and ?Tk = d f 

(Tk — iy1 is a mermorphic B-valued function of X on R^. 

Lemma 1 is the key result needed in the proof of Theorem 1 and follows 
employing the methods of potential theory as well as a result of Steinberg, 
[7, Theorem 1]. We denote the poles of ZTk on R^ by 2. Set 

Ttf(x) = 2 n(y) — dSy 

for each n(x) e £, À e R^ and x e Q. 

4 GÔ(JC, y; A) is defined in Q - S by (1.4) with each r}n(x) continued across / as an odd 
function. 
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LEMMA 2. For each x,yeQ (x ^ y) and XeRœ — @, we have 

G~(x9 y; X) - G0"(x, y; X) + TX(W> JOX*), 

where rjÀ(x\ y) = - ^ ( G ö O , J>; *)X*')» *' e >'• 

Lemma 2 follows from the properties of Gô(x, y; X) as well as results 
from potential theory. An analogue of Lemma 2 follows for each w~(x; X) 
in the same way. This combined with Lemma 1 and (1.1)—(1.3) implies 
Theorem 1. The poles of each of the functions w~(x;l), ^m(X) and 
G~(x, y; X) belong to Q). We remark that we can also derive the mero-
morphic continuation of ^m{X) in an easier way without employing the 
operator TA. The detailed proofs of all of the results of this note will 
appear elsewhere. 

3. Resonant states. We now characterize the poles of ^m(X) in terms 
of "resonant states". 

DEFINITION. Suppose that m is a fixed positive integer, A0 e Tni,...,Bk, 
1 ^ n l 5 . . . , nk ^ m, and there exists a nontrivial solution, w(x; I0), of 

(3.1) (A + %0)w(x; I0) = 0 in Q, w(x; 10) = 0 on Q, 

where X0 denotes that value of 1 0 in TWl n k l . Suppose also that there 
exist constants c„, n = 1, 2, . . . , with some Cj ̂  0, 1 ^ j ^ m, j ^ 
n l9 . . . , nk_x such that 

m 

w(x;l0) = I > « exp{/(l0 - v„)ll2xN}rj„(x) 

(3-2) 
+ E cnGXp{-i(X0 - vB)1/2xN}*/B(x) 

n = m + 1 

for xN ^ xN. Then we shall say that A0 is a Tni Wk resonant state for 
Ay {& as in Theorem 1). 

Note that w(x; 10) is exponentially blowing up for xN large. 

THEOREM 2. Let TWl „k denote an arbitrary sheet of R^ such that 
1 ^ n l5 . . . , nk ^ m. Suppose that & is the interval of Theorem 1(b), 
A0 e TWl Wk a m / 1 0 is chosen so that X0 e Tni „k r Then X0 is a pole of 
^m(X) if and only if X0 is a TBl Bk resonant state for A#. 

Theorem 2 is proved by obtaining explicit formulas relating the resonant 
states and the 5^n(/l), employing the techniques of [8, §3]. In a future 
publication, we shall give concrete examples of resonant states. These 
will be obtained from the theory of waveguides. 

4. Perturbations due to a potential. Now suppose that A is the operator 
given by — A + q(x)- associated with the zero Dirichlet boundary 



1973] SINGULARITIES OF THE ^-MATRIX, GREEN'S FUNCTION 1307 

condition in S. It will be proved elsewhere, again employing the integral 
equation method, that analogues of Theorems 1 and 2 hold for A0 and A, 
provided the real-valued potential q(x) satisfies the condition: (C) q(x) e 
L2 loc(S) and \q(x)\ ^ Ke~a^XN^ for xN ^ xN and positive constants K 
and a. 

In this case the meromorphic continuations onto the sheet Fn i Wk 

are only valid in the intersection, f)k
=iMnj, of the strips Mn. =d f 

{X\ |Im(A — vM.)1/2| < a/2}. Furthermore, equation (3.2) is replaced by an 
asymptotic relation of the same form and similarly for the radiation 
condition (1.1). In the special case in which q(x) = q(xN), the study of 
resonant states may be readily replaced by the corresponding problem 
for the one-dimensional Schroedinger operator on the interval [0, oo). 
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