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It is the purpose of this note to study the singularities of the &-matrix
and Green’s function associated with the operators considered in [1]-[3].
As will be seen, there are a countable number of branch points, as well as a
countable number of different #-matrices associated with these operators.
In this respect, these results differ considerably from those drawn from
quantum mechanical scattering? and the exterior problem (see e.g. [4]
and [5)).

1. Preliminaries. Let S denote the semi-infinite cylinder in RY,
N-dimensional Euclidean space (N = 2), with arbitrary bounded, smooth
N — 1 dimensional cross-section I. Thus S consists of the points x =
((xq, -+ ., xy—1), Xy) = (X, xy), where X el and xy = 0.3 Let Q denote
the domain with smooth boundary Q, obtained from S by perturbing a
finite part of S. Thus Q = S for xy = %y for some fixed Xy > 0.

We now define the operators A,(A4) by — A acting in L,(S) (L,(Q)) and
associated with zero Dirichlet boundary conditions on S(Q). Let A4,
denote the corresponding operator defined in L,(I) and let {v,} and
n,X) denote a complete set of eigenvalues (in increasing order) and
corresponding orthonormal eigenfunctions for A4,. Let A¢ denote that
part of A orthogonal to all of its eigenvalues, A denote the set of eigenvalues
of Aand A’ = A L {v,}.

It was shown in [1] that a complete set of generalized eigenfunctions
for A, and A€ are given by

wo(x; ) = (2/m)'2 sin(d — v,)' 2 (%), A ¢ {v.),
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2 Qur results are related to wave progagation in a waveguide.

* We might just as easily consider the infinite cylinder, S’ = (x = (%, xy)| X€l, —0 <
Xy < o0).
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and
w, (X3 4) = wi(x; 2) + v, (x;4),  A¢A,
where
b 2) = 3 cDexp{—ilh — w2 xy}n(®)
1.1) "l

+ 2 oy (Dexp{ =y — 1) xy}n,(%)
n=m+1

for xy = Xy and A € (v, Vu1 1), ( )*/? denoting the positive square root.
Another complete set of generalized eigenfunctions, w," (x; 1) = wo(x; 1) +
vy (x; 4), for A° are defined analogously with exp{—i( )!/?} replaced by
exp{i( )!/2} and ¢ (4) by ¢ ().

It was proven in [3] that the ¥-matrix, %,(4), associated with 4, and
A at the point A € (v,,, V,n+1), 4 € A, is given by the matrix

1.2) ) =1, + T (4),
where I, is the identity matrix of rank m and
To2) = (tyu(?) with
taw(A) = —Q2n)'2ict (), n,n' =1,...,m.

Note that the rank m of &, (4) varies with A.
It follows from the arguments of [6] that Green’s function, G (x, y; 1),
for the operator A, — 4 is given by

(1.3)

ey

; L \1/2 a2
Gox,y: A =3 sin(A — v,)}*xy exp{ 1/;(/1 v 2yn}
n#1 A =)

N3 F),

(1.4) for xy < yy

@ exp{—iA — v,)'?xy} . N
=2 o (/1(— v )1/)2 ) sin(d — v)' 2y, ()5,
n=1 n

for xy > yn,

where x, ye S and Im(4 — v,)"’?> < 0,n = 1,2,....In view of (1.1) and
(1.4), it is natural to define the infinitely sheeted Riemann surface R,
obtained by making each point v, a branch point of order one. By
L., ... n (T, . ), weshall mean that sheet of R, consisting of those
points A for which 0 < arg(A — v,) < 2n (0 < arg(d — v,) < 2m) for
n=mny,...,n and —27 < arg(d — v,) < 0 (—2n < arg(d — v,) < 0)
for all remaining n. The *‘physical sheet”’, ['y (cl(I',)), shall consist of those
Asatisfying —2n < arg(A — v,) < 0(—2% < argd —v,) < 0),n=1,2,....
It can be easily seen that G, (x, y; 4), defined initially on I'j has an
analytic continuation onto all of R in the following sense. Consider
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T,,m 2 1,suppose ¥ = [a, b] = (v, v;,) for an arbitrary J = m and
set k = (1 — v,)"/? for each A€ %. Then the function Gg(x, y; k) =4
Go(x,y; A) is an analytic function of k for each kelmk <O u
[(@ = v,)'2, (b — v,)'?] U Im k > O such that Im(x? + v,, — v,)"/? <
0 for n # m. Hence G (x, y; 4) has an analytic continuation from I',
onto I',, across 4. We define an analytic (meromorphic) continuation of a
complex or operator-valued function F(A) from an arbitrary sheet of R
onto any other sheet in an analogous fashion. If such an analytic (mero-
morphic) continuation exists for each sheet of R, we say that F(1) is
analytic (meromorphic) on R, . We shall say that 1, € R is a pole of
F() if ko = (Ag — v,)*/? is a pole of F(x) = F(x*> + v,) corresponding
to any of the countably many possible continuations described above.

2. Meromorphic continuations. Let G~ (x, y; A1) denote Green’s function
for the operator A — A, where x, ye Qand A eI,

THEOREM 1. (a) G™(x, y; A) has a meromorphic continuation from T,
onto all of R,,. (b) Suppose ¥ < (Vp, Vus1) — A. Then &,(A) and each
w,(x;4), n=1,...,m, has a meromorphic continuation from % onto
eachsheet,T', . 0f R, across (v, v, 1), provided0 < n,,...,n, < m.

We shall outline the proof of Theorem1 as follows.Sety = Q — Q N S,
7 = closure of y and B = C(7). Thus n(x) € B if n(x) is a continuous function
defined on j. We set |[n]|z = max,; |7(x)|. Note that 7 is compact by our
definition of Q. We define the integral operator T, by

o
Tin(x) = 2j n(y) 3y Go (x, y; A)dS*
2 y

for eachn(x)e B,xejand Le R .

LEMMA 1. T, is a compact, analytic B-valued function of A and T, = 4
(T, — I)™! is a mermorphic B-valued function of A on R,.

Lemma 1 is the key result needed in the proof of Theorem 1 and follows
employing the methods of potential theory as well as a result of Steinberg,
[7, Theorem 1]. We denote the poles of 7, on R, by 9. Set

0G4 (x, y; 4) dsy

Tin(o) = 2j_n(3’) Fe

foreach n(x)e B,Ae R and x € Q.

4 Gy (x, y; A) is defined in Q — S by (1.4) with each 5,(X) continued across [ as an odd
function.
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LEMMA 2. For each x,yeQ (x #y) and Ae R, — 9D, we have
G™(x, y; A) = Gg(x, y; A) + Tym,(, ),
where n;(x', y) = — 7 (Go (, y; X, x' €.

Lemma 2 follows from the properties of G, (x, y; A) as well as results
from potential theory. An analogue of Lemma 2 follows for each w, (x; 1)
in the same way. This combined with Lemma 1 and (1.1)—(1.3) implies
Theorem 1. The poles of each of the functions w, (x; 1), <,(4) and
G (x, y; A) belong to 9. We remark that we can also derive the mero-
morphic continuation of %, (1) in an easier way without employing the
operator T,. The detailed proofs of all of the results of this note will
appear elsewhere.

3. Resonant states. We now characterize the poles of ¥,(4) in terms
of “resonant states”’.

DEFINITION. Suppose that m is a fixed positive integer, o€, ..,
1 <n,,...,n = m,and there exists a nontrivial solution, w(x; 4,), of

(3.1 (A + Agw(x;4) = 0 inQ, wix; 1) =0 onQ,

where 1, denotes that value of 4, in T, __,. _,. Suppose also that there
exist constants c,, n = 1,2,..., with some ¢; #0, 1 £j<m, j#
Rys - . . > Ng—y such that

wixs Zo) = 3 €y explille — ) Pxa}n®)
(3.2) e
+ Z C" exP{_’uo - vn)llsz}”n(g)

n=m+1

for xy = Xy. Then we shall say that 4, is a I',,
Ag (% as in Theorem 1).
Note that w(x; 4,) is exponentially blowing up for x, large.

. Tesonant state for

.....

THEOREM 2. Let T, ., denote an arbitrary sheet of R, such that
1 <n,,...,n < m. Suppose that 4 is the interval of Theorem 1(b),
Ao €Ty, . m and Ay is chosen so that €T, . .. Then A, is a pole of
S(4) if and only if Ay isa T, . resonant state for Ag.

Theorem 2 is proved by obtaining explicit formulas relating the resonant
states and the ¥, (1), employing the techniques of [8, §3]. In a future
publication, we shall give concrete examples of resonant states. These
will be obtained from the theory of waveguides.

.....

4. Perturbations due to a potential. Now suppose that A is the operator
given by —A + ¢(x)- associated with the zero Dirichlet boundary
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condition in S. It will be proved elsewhere, again employing the integral
equation method, that analogues of Theorems 1 and 2 hold for 4, and A4,
provided the real-valued potential g(x) satisfies the condition: (C) g(x) €
L, loc(S) and |q(x)] < Ke *™! for xy = %y and positive constants K
and a.

In this case the meromorphic continuations onto the sheet I', o
are only valid in the intersection, ﬂ" , M, of the strips M =4
{A Im(A — v, )1/2| < a/2}. Furthermore equation (3.2) is replaced by an
asymptotic relation of the same form and similarly for the radiation
condition (1.1). In the special case in which g(x) = ¢(xy), the study of
resonant states may be readily replaced by the corresponding problem
for the one-dimensional Schroedinger operator on the interval [0, o).
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