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ABSTRACT. In this note an infinite-dimensional result is established
which implies the following finite-dimensional result as a special case:
If K, L are finite CW-complexes and f is a map of K onto L such that
each point-inverse has trivial shape, then f is a simple homotopy
equivalence.

1. Introduction. A Hilbert cube manifold, or Q-manifold, is a separable
metric manifold modeled on the Hilbert cube Q. A mapping f:X — Y
is said to be CE, or cell-like, provided that f is onto, proper (i.e. the
inverse image of each compactum is compact), and each point-inverse
/7 (p) has trivial shape (in the sense of Borsuk [1]). Here is the main
result of this note.

THEOREM 1. If X, Y are Q-manifolds and f: X — Y is a CE mapping, then
f is proper homotopic to a homeomorphism of X onto Y.

The key technical result needed for the proof of Theorem 1 is the solution
of an infinite-dimensional CE handle problem, which is stated in Lemma 2
here and is the main result of [ 7]. The proof of Lemma 2 uses a considerable
amount of infinite-dimensional topology along with the torus technique
of [10], which was crucial in establishing a corresponding finite-
dimensional result.

A CW-complex is strongly locally-finite provided that it is the union
of a countable, locally-finite collection of finite subcomplexes. The
following is an application of Theorem 1 to infinite simple homotopy
equivalences of strongly locally-finite CW-complexes (see [9] for a
definition of an infinite simple homotopy equivalence).

THEOREM 2. If K, L are strongly locally-finite CW-complexes and f:
K — Lis a CE mapping, then f is an infinite simple homotopy equivalence.

This generalizes a result of the author’s [6], where it was shown that
any homeomorphism between strongly locally-finite CW-complexes is an
infinite simple homotopy equivalence. We remark that Cohen [8] had
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previously established a version of Theorem 2 for CE mappings of finite
simplicial complexes in which the mappings are PL. More recently
R. D. Edwards has proved a version of Theorem 2 for arbitrary CE
mappings of countable, locally-finite, simplicial complexes.

2. Some lemmas. If f, g: X — Y are maps and # is an open cover
of Y, then we say that fis #-close to g provided that for each x € X there
exists a U € % containing both f(x) and g(x). If A = Y, then we say that
f = gover Aprovided that f~'(4) = g~ "(A)andf | f~1(4) = g| g~ (4).
We also say that f is 1-1 over 4 provided that f | f~1(A4) is 1-1.

If X is a Q-manifold, then a closed subset 4 of X isa Z-set in X provided
that given any nonnull and contractible open subset U of X, U\ 4 is
also nonnull and contractible. The following result is established in [7].

LEMMA 1. Let X and Y be Q-manifolds, f:X — Y be a CE mapping,
and let A = Y be a Z-set in Y. If U is an open cover of Y, then there exists
a CE mapping g:X — Y such that g is 1-1 over A, g~ *(A) is a Z-set in X,
and g is U-close to f.

For notation for the next result let R" denote Euclidean n-space
(where R' = R) and let B" denote the standard n-ball of radius r, with
interior Int(B") and boundary Bd(B") = S~ !. The following is the CE
handle result of [7].

LEMMA 2. Let X be a Q-manifold and let f:X — B% x R" x Q bea CE
mapping, for k = 0 and n = 1, such that f is 1-1 over S¥*' x R" x Q
and f~1(S*! x R" x Q)is a Z-set in X. Then there exists a CE mapping
g:X - BX x R" x Q such that g = f over (' x R" x Q) U (B} x
(R"\Int(B3)) x Q) and g is 1-1 over BX x B} x Q.

We now use Lemmas 1 and 2 to prove the following result which will
be needed in the proof of Theorem 1.

LEMMA 3. Let X and Y be Q-manifolds, f:X — Y be a CE mapping,
K be a finite simplicial complex, and let :K x Q x R — Y be an open
embedding. Then there exists CE mapping g:X — Y such that g = f over
Y\o(K x Q x (—=2,2)),gis 1-1 over (K x Q x [—1,1]), and

g~frel X\f'p(K x Q x (—2,2)).

ProoF. By taking a regular neighborhood of K in an Euclidean space
we get a compact, combinatorial, n-manifold M which is simple homotopy
equivalent to K. The main result of [11] asserts that if 4 and B are simple
homotopy equivalent finite simplicial complexes, then 4 x Q is homeo-
morphic to B x Q. Thus no generality is lost by replacing K with a
compact, combinatorial, n-manifold M.



1288 T. A. CHAPMAN [November

By choosing a PL handle decomposition of M we can write M =
M_uUM,u- - uM, where M_, is a regular neighborhood of oM
and each M, is a compact PL submanifold of M which is obtained from
M;_ by adding handles of index i. For each i, —1 < i £ n, we will show
how to construct a CE mapping ¢;:X — Y such that g, = f over
Y\p(M x Q x (—2,2)),g;is 1-1 over a neighborhood of

®(M; x @ x [-1,1]),
and g; ~ frel X\f ‘(M x Q x (—2,2)).
For the construction of g_, we first note that (0M x Q x [—1,1])
is a Z-set in the Q-manifold (M x Q x (—2,2)). Applying Lemma 1
to the restricted CE mapping

flf oM x @ x (=2,2) - o(M x Q x (=2,2)

we can find a CE mapping g_,:f oM x Q x (—=2,2)) » o(M x
Q x(—2,2) such that g", is 1-1 over @(0M x Q x [—1,1]),
g-) " 'p0M x @ x [—1,1]) is a Z-set in f~'p(M x Q x (—2,2)),
and g"_, is %-close to f|, for any prechosen open cover % of (M x Q x
(=2, 2)). By choosing % sufficiently fine we can extend g'_, to a CE
mapping §_,:X — Y such that §_, = f over Y\p(M x Q x (=2,2)
and §_,; ~ frel X\f 'o(M x Q x (—2,2)). The collaring theorem of
[3], which asserts that every Q-manifold which is a Z-set in another
Q-manifold is also collared in that Q-manifold, implies that §Z{@p(0M x
Q x [—1,1]) has a collar neighborhood in X. That is, there exists an
open embedding

0:g-1p0M x Q x [—-1,1]) x [0,1) » X

such that a(x, 0) = x, for all xeg-jp(@M x Q x [—1,1]). It is also
true that OM x [—1,1] has a collar neighborhood in M x (—2,2)
which contains M_; x [—1,1]. This is a finite-dimensional problem
and uses the fact that M_, is a regular neighborhood of dM. Thus
@(@M x Q@ x [—1,1]) has a collar neighborhood in @M x Q x
(—2,2)) which contains @(M_; x Q x [—1,1]). Using these collar
neighborhoods it is easy to modify §_, to get our desired g_;.

To construct g;, 0 < i < n, we just inductively work our way through
the handles of the decomposition, applying Lemma 2 repeatedly. We
leave the details to the reader.

Finally we will need a relative version of Theorem 1 for the compact case.

LEMMA 4. Let X, Y be compact Q-manifolds, A < Y be a Z-set, and let
f:X — Y be a CE mapping such that f is 1-1 over A and f~*(A) is a Z-set
in X. Then there exists a homeomorphism g:X — Y such that g = f on
fYA) and g ~ f rel f~1(A).
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PrOOF. The triangulation theorem of [4] asserts that Y is homeo-
morphic to K x Q, for some finite simplicial complex K. The comments
made at the beginning of the proof of Lemma 3 imply that Y is homeo-
morphic to M x Q, for some compact, combinatorial, n-manifold M.
Thus Y can be replaced by M x Q and the main theorem of [2] concerning
Z-sets in Q-manifolds implies that we can assume 4 < M x Q. [The
main theorem of [3] implies that there is a homeomorphism 4 of M x Q
onto M x [0,1] x Q which takes 4 into M x {0} x Q. Then h(A4) =
AM') x Q,where M' = M x [0,1].]

Using Lemma 1 let §_,:X —» M x Q be a CE mapping such that
g_iisl-1overdM x Q,G-1(0M x Q)isa Z-setin X, g_, is #-close to f,
for any prechosen open cover % of Y, and §_,; = f over A. [To see this
we apply Lemma 1 to the restricted CE mapping f | X\fY4) -
(M x Q)\A.] If % is sufficiently fine, then we have §_, ~ frel f~(4).

As in the proof of Lemma 3let M = M_, U My U - UM, be aPL
handle decomposition of M and modify §_, to get a CE mapping
g_1:X — Y such that g_, is 1-1 over a neighborhood of M_, x Q,
g, =§_, over dM x Q, and g_, ~g_, rel jZ}(OM x Q). Then we
inductively work our way through the handles in a standard manner,
applying Lemma 2 at each step.

3. Proof of Theorem 1. In Lemma 4 we treated the compact case so
let us assume that we have a CE mapping f: X — Y, where X and Y are
noncompact Q-manifolds. The triangulation theorem of [5] implies that
we can replace Y by K x Q, where K is a countable, locally-finite,
simplicial complex. Write K = | ), K,, where each K, is a finite
subcomplex of K such that K, < Int(K,, ) and Bd(K,) is a finite sub-
complex which is PL bicollared in K. [To achieve this we might have to
subdivide K.] Thus for each n = 1 we have an open embedding

(pn:Bd(Kn) X Q X R - (Int(Kn+1)\Kn—l) X Q

such that ¢,(x, g, 0) = (x, g), for all (x, g) € Bd(K,) x Q. Moreover the
@,’s can be chosen so that their images are pairwise disjoint.

It follows from Lemma 3 that there exists a CE mapping g,:X —» Y
such that

01 = 1 over(K x 0)\ U o(Bd(K,) x Q x (~2.2),

e8]

g1 is 1-1 over | @ Bd(K,) x @ x [—1,1]),

n=1

and g, is proper homotopic to f. Now consider the restricted CE mapping
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g1|: X, - Y, where
Y, = (K x Q)\ ) ouBAK) x 0 x (—5, 1) and X, = i '(Y,).
n=1

Note that Y; is the union of compact Q-manifolds which are pairwise
disjoint. Moreover the topological boundaries of these compact Q-
manifolds (i.e. boundaries in K x Q) are Z-sets in Y; such that gll is 1-1
over each one and the inverse image of each one under g1| isa Z-setin X,.
Thus Lemma 4, applied to these compact Q-manifolds, gives a homeo-
morphism §,:X; — Y; which extends to a homeomorphism g,: X —» Y
such thatg, = g, over U;":l 0 (Bd(K,) x @ x [—%,3]andg, is proper
homotopic to g,. Thus g, is our required homeomorphism.

4. Proof of Theorem 2. In [6] it was shown that if K, L are strongly
locally-finite CW-complexes and f: K — L is a proper homotopy equiv-
alence, then f is an infinite simple homotopy equivalence if f x id:K x
Q — L x Q is proper homotopic to a homeomorphism of K x Q onto
L x Q.

If f:K — Lis a CE mapping, then f x id:K x Q@ - L x Q is also a
CE mapping. It follows from [12] that K x Qand L x Q are Q-manifolds.
Thus Theorem 2 follows from Theorem 1.

5. Open questions. We list here two questions which are related to
Theorem 2 but which do not appear to be susceptible to the same tech-
niques. In what follows let 4 be a compact ANR and let K, L be finite
CW-complexes.

Question 1. If f:K — A, g:L — A are CE mappings, then does there
exist a simple homotopy equivalence h:K — L such that gh ~ f?

Question 2. If f: A —» K, g:A — L are CE mappings, then does there
exist a simple homotopy equivalence h: K — L such that hf ~ g?
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