A COHOMOLOGY FOR FOLIATED MANIFOLDS

BY JAMES L. HEITSCH1

Communicated by S. S. Chern, May 1, 1973

1. **Introduction.** Let M be a connected manifold and τ a foliation on M. τ is then an involutive subbundle of TM, the tangent bundle of M. Denote by v the normal bundle to τ , $v = TM/\tau$. We denote sections of a bundle P over M by $\Gamma(P)$. All manifolds, bundles and maps are assumed to be C^{∞} .

There is a canonical connection ∇ on ν which is flat along τ [B]. Consider the complex

$$\Gamma(v) \stackrel{\hat{d}}{\longrightarrow} \Gamma(v \otimes \Lambda^1 \tau^*) \stackrel{\hat{d}}{\longrightarrow} \Gamma(v \otimes \Lambda^2 \tau^*) \stackrel{\hat{d}}{\longrightarrow} \cdots,$$

where τ^* is the cotangent bundle to the foliation and

$$\begin{split} \widehat{d}(\sigma)(X_1, \dots, X_{k+1}) &= \sum_{1 \le i \le k+1} (-1)^i \nabla_{X_i}(\sigma(X_1, \dots, \hat{X}_i, \dots, X_{k+1})) \\ &+ \sum_{1 \le i < j \le k+1} (-1)^{i+j+1} \sigma([X_i, X_j], X_1, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_{k+1}) \end{split}$$

for
$$\sigma \in \Gamma(v \otimes \Lambda^k \tau^*), X_1, \ldots, X_{k+1} \in \Gamma(\tau)$$
.

Since the curvature tensor of ∇ restricted to τ is identically zero we have that $\hat{d} \circ \hat{d} = 0$. Denote the homology of this complex by $F^*(\tau; \nu)$. This is the cohomology of the Lie algebra of vector fields tangent to the foliation with coefficients in sections of the normal bundle, the representation being given by the connection $\lceil \mathbf{GF} \rceil$.

In general the groups $F^k(\tau; \nu)$ are not finitely generated (the complex is not elliptic) but they satisfy the following.

- (i) F^* is a functor from the category of foliated manifolds and transverse maps to the category of abelian groups and homomorphisms.
- (ii) If $f: N \to M$ is an embedded transverse submanifold, we can define relative cohomology groups $F^*(\tau; \nu, f)$ and obtain the usual long exact sequence.
- (iii) F^* is an invariant of the diffeomorphism type of the foliation. However, F^* is not an invariant of the integrable homotopy type of the foliation when M is an open manifold.
 - 2. Interpretation of $F^1(\tau; \nu)$. Fix a Riemannian metric on M and think

AMS (MOS) subject classifications (1970). Primary 14F05, 55B30, 57D30.

¹ Supported in part by National Science Foundation grant GP-34785X.

of v as all tangent vectors normal to τ . We then have projection operators $\pi:TM\to \tau$ and $\pi^\perp:TM\to v$. We can view $\Gamma(v\otimes \tau^*)$ as infinitesimal deformations of τ as follows: Let τ_s , $s\in R$, be a differentiable family of codimension q subbundles of TM with $\tau_0=\tau$ and let π_s and π_s^\perp be the associated projection operators. For each $X\in\tau_0$ define

$$\sigma(X) = \left. \frac{d}{ds} \left(\pi_s(X) \right) \right|_{s=0}.$$

We call σ the infinitesimal deformation associated to the family τ_s and note that $\sigma \in \Gamma(\nu \otimes \tau^*)$.

For each $s \in \mathbf{R}$, let $\Phi_s(X, Y) = \pi_s^{\perp}([\pi_s X, \pi_s Y])$.

Lemma. (i) Φ_s is an exterior 2 form on TM.

- (ii) τ_s is involutive if and only if $\Phi_s \equiv 0$.
- (iii) $\hat{d}\sigma(X, Y) = d/ds \left(\Phi_s(X, Y)\right)|_{s=0}$.

PROPOSITION 1. Let τ_s be a differentiable family of subbundles of TM all of which are foliations. Let σ be the associated infinitesimal deformation. Then $\hat{d}\sigma = 0$.

PROPOSITION 2. Let ϕ_s , $s \in \mathbf{R}$, be a flow on M, X the associated vector field and τ_0 a foliation. For each $s \in \mathbf{R}$, $(\phi_s)_*\tau_0$ is a foliation on M denoted τ_s . Let σ be the associated infinitesimal deformation. Then $\sigma = \hat{d}(\pi_0^{\perp}X)$.

Note that any element $X \in \Gamma(\nu)$ generates a local flow whose associated infinitesimal deformation is $\hat{d}X$. Thus we may view $F^1(\tau; \nu)$ as infinitesimal deformations of the foliation τ , modulo trivial deformations.

Question. Given $\alpha \in F^1(\tau; \nu)$, under what conditions does there exist an element $\sigma \in \alpha$ which comes from a deformation of τ through foliations?

EXAMPLE. Constant slope foliations on T^2 . Let $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ and denote by τ_a the foliation of T^2 given by all straight lines of slope a.

Theorem 1. If a is rational then $F^0(\tau_a; v_a) \cong C^\infty(S^1)$, $F^1(\tau_a; v_a) \cong C^\infty(S^1)$ and each element of $F^1(\tau_a; v_a)$ can be realized as the associated infinitesimal deformation of a differentiable family of foliations.

Recall that an irrational number a is not a Liouville number provided there is a positive integer p and $\varepsilon > 0$ such that $|a - n/m| > \varepsilon(|m| + |n|)^{-p}$ for m and n sufficiently large integers.

THEOREM 2. If a is irrational then $F^0(\tau_a; \nu_a) \cong \mathbf{R}$. If a is not a Liouville number then $F^1(\tau_a; \nu_a) \cong \mathbf{R}$ and each element of $F^1(\tau_a; \nu_a)$ can be realized as the associated infinitesimal deformation of a differentiable family of foliations.

See [H].

3. The complex restricted to a leaf. Let L be a leaf of a foliation τ on M

and denote by ν the normal bundle of τ restricted to L. Consider the complex

$$\Gamma(v) \xrightarrow{\hat{d}} \Gamma(v \otimes \Lambda^1 T^*L) \xrightarrow{\hat{d}} \Gamma(v \otimes \Lambda^2 T^*L) \xrightarrow{\hat{d}} \cdots,$$

where \hat{d} is defined as above. Again $\hat{d}^2 = 0$ and we denote the resulting groups by $F^*(L)$.

THEOREM 3. $F^*(L)$ is isomorphic to $H^*(L; \mathbf{R}^q)$, the cohomology of L with coefficients in \mathbf{R}^q $(q = \dim v)$ twisted over the linear holonomy of the foliation τ .

We prove this by noting that the linear holonomy of the foliation is the holonomy of the canonical connection on v. We then show that the complex $\{\Gamma(v \otimes \Lambda^k T^*L), \hat{d}\}$ is isomorphic to the complex $\{\mathscr{A}_{\pi_1(L)}(\tilde{L}; R^z), d\}$, the de Rham complex of R^q valued forms on the simply connected covering space \tilde{L} of L which satisfy:

$$(\sigma^*\omega)(Y_1,\ldots,Y_k)=h(\sigma^{-1})(\omega(Y_1,\ldots,Y_k)),$$

where ω is an \mathbb{R}^q valued k-form on \widetilde{L} , $Y_1, \ldots, Y_k \in \Gamma(T\widetilde{L})$, $\sigma \in \pi_1(L)$ and acts on \widetilde{L} , by deck transformations, and $h:\pi_1(L) \to \operatorname{GL}(q, \mathbb{R})$ is the holonomy representation.

REFERENCES

[B] R. Bott, On a topological obstruction to integrability, Proc. Sympos. Pure Math., vol. 16, Amer. Math. Soc., Providence, R.I., 1970, pp. 127-131. MR 42 #1155.

[GF] I. M. Gel'fand and D. B. Fuchs, Cohomologies of the Lie algebra of tangent vector fields on a smooth manifold, Funkcional. Anal. i Priložen. 3 (1969), no. 3, 32–52. (Russian) MR 41 #1067.

[H] C. S. Herz, Functions which are divergences, Amer. J. Math. 92 (1970), 641-656. MR 44 #7590.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address: Department of Mathematics, University of California, Los Angeles, California 90024