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Although the ring topologies on the field Q of rationals defy classifica­
tion (see [2, §1]), we are able to resolve a longstanding problem in the 
theory of topological rings by showing that the only locally bounded ring 
topologies on Q are the known ones, and in particular, the only Hausdorff, 
locally bounded, additively generated topology on Q (a ring topology is 
additively generated if there are no proper open additive subgroups) is 
the ordinary archimedean topology. 

Let P be the set of prime numbers, and for each/? G P let | . . |p denote 
the/?-adic absolute value on Q. Let | . . | ^ denote the ordinary archimedean 
absolute value on Q, and let P' = P u {oo}. For each subset R of P', let 
O(R) = {x G Q:|x|p ^ 1 for all/? G R}. AS is well known, for each subset 
R of P' there is a unique locally bounded ring topology STR on Q for which 
O(R) is a bounded neighborhood of zero (see [1, Exercise 20, pp. 120-121]) ; 
ifR # F , a fundamental system of neighborhoods of zero for ^ c o n s i s t s 
of all 0(R)x9 where x is a nonzero rational. Note that ZTr is the discrete 
topology, and Zr0 is the nonHausdorff ring topology. 

THEOREM. The only locally bounded ring topologies on Q are the 
topologies £TR, where R is a subset of P'. In particular, the only Hausdorff, 
locally bounded, additively generated topology on Q is the ordinary 
archimedean topology ^'o0. 

To prove the Theorem, we first identify the completion of Q for 3~R, 
where R is a nonempty proper subset of P', with the local direct product 
AR of the fields Qp relative to the open subrings Zp , where p e R (Qp and 
Zp are respectively the field (ring) of p-adic numbers (integers) if p is a 
prime; Qoo == ^oo ^ ^ e rea^ field). The crucial step is to show that if a 
Hausdorff locally bounded ring topology ZT on Q is weaker than 3~R for 
some proper subset RoîP\ then <F = 3TS for some proper subset SofP'; 
this is accomplished by studying the completion of Q for ff as a topological 
algebra over the topological ring AR. We then apply two results of Mutylin 
(the only results known thus far concerning the classification of locally 
bounded ring topologies on Q); the first [2, Theorem 2] is that if & is not 
stronger than F^ then <T = ZTS for some subset S of P (the above step 
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enables us to reduce by half the length of Mutylin's ingenious proof); the 
second [2, Corollary 5] is that if 9~ is stronger than ZT^ but not discrete, 
then ZT is weaker than &~s for some proper subset S of P'. 

The following corollaries follow easily ; the second generalizes a theorem 
of Mutylin [2, Theorem 3]. 

COROLLARY 1. The only nondiscrete locally compact rings containing Q 
densely are the rings AR, where R is a nonempty proper subset of P'. 

COROLLARY 2. If A is a Hausdorff, complete, locally bounded ring 
containing Q, then either Q is discrete, or the closure of Q is AR for some 
nonempty proper subset R of P'; in particular, if A is, in addition, a field, 
then either Q is discrete, or the closure of Q is either the real field or the 
p-adic number field for some prime p. 
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