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1. Introduction. Let P, Q, and R be real-valued n x n matrix functions 
defined on the interval [a, b). Assume that P, Q, and R are continuous 
on [a, b) and that P(t) and R(t) are symmetric matrices for each t in [a, b). 
We do not assume that Q is symmetric. Also assume that R has the 
property that its value for any / in [a, b) is positive definite, that is, 
v*R(t)v > 0 for all «-vectors v ^ 0 and for each t in [a, b). Let 

Ax>y)\l\ = \\**(t)R(t)y(t) + x*(t)Q{tm + **(00*(0y(0 
(1.1) J e l 

+ x*{t)R{t)y{t)~] dt (a S *i S e2 < b)9 

for x and y in the class A of vector-valued functions described below. Also 
let 

(1.2) JJLx, y) = / (* , >0 I:, /e(x) = /e(x, *), 

(1.3) J(x, y) = lim inf Je(x, y), J(x) = lim inf Je(x) 
e-+b- e->b-

for x and JF in A. The class A is the set of vector-valued functions x*(t) = 
(*i(0» • • • » îi(0)> a = * = ^̂  satisfying 

(i) x(0 is continuous on the interval [a, è] and x(a) = x(è) = 0, 
(ii) x(t) is absolutely continuous and x*(t)x(t) is Lebesgue integrable 

on each closed subinterval of [a, b). A is a vector space of functions. 
/ is said to be singular at a point t in [a, b~\ if the determinant of R(t) 

is zero or not defined. The point t = è is a singular point in this paper. 

2. Preliminaries. What is presented here is part of a quadratic form 
theory developed and used extensively by Hestenes [3], [4]. Let Q(x) 
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be a quadratic functional defined on a vector space V and let Q(x, y) be 
its associated symmetric bilinear functional. Two vectors x and y in V 
are said to be Q-orthogonal whenever Q(x, y) = 0. A vector x is said to 
be Q-orthogonal to a subset 5 of F whenever Q(x, y) = 0 for every j ; in S. 
By the Q-orthogonal complement SQ of the set S in F is meant the set of 
all vectors x in V that are Q-orthogonal to 5. SQ is a subspace of K A 
vector in S that is Q-orthogonal to S is called a Q-null vector of S. The 
intersection S n SQ is the set of Q-null vectors of S and is usually denoted 
by S0. If S is a subspace of V, then so is S0. 

Let S be any subspace in K We define the nullity n(S) of Q on S or more 
simply the Q-nullity of S to be the dimension of the subspace S0 = S n SQ 

of Q-null vectors in S. We define the signature s(S) ofQonS, the index of 
Q on S, or the Q-signature of S to be the dimension of a maximal subspace 
M of S on which Q < 0 if this dimension is finite. If no such finite 
dimensional space exists, we set s(S) = oo. By Q < 0 on M we mean that 
Q(x) < 0 for each nonzero x in M. It turns out that the dimension s(S) 
of M is independent of the choice of M so that the notion of signature is 
well defined. 

THEOREM 2.1. If the Q-signature of S is finite where S is a subspace of 7, 
then it is given by one of the following quantities: 

(i) the dimension of a maximal subspace M in S on which Q < 0; 
(ii) the dimension of a maximal subspace M of S on which Q ^ 0 and 

having M n S0 = 0; 
(iii) the dimension of a minimal subspace M of S such that Q ^ 0 on 

S n M 0 ; 
(iv) the least integer k such that there exist k linear functionals 

Lx, . . . , Lk on S with the property that Q(x) ^ 0 for all x in S satisfying 
the conditions La(x) = 0 (a = 1, 2, . . . , fc). 

3. Results. The main purpose of this paper is to announce the results 
presented in this section. The details and more results are to appear 
elsewhere. 

The definition of a singular conjugate point is found in Tomastik 
[7, p. 61] and Chellevold [1, p. 333]. It extends the definition of Morse 
and Leighton [5, p. 253], who treated the case n = 1. For a rg e ^ b 
let A(e) = {xe A :x(t) = 0 for e ^ t S b}, where A is defined in §1 of 
this paper. Define the set B in A to be the union of the sets A(e) for 
a < e < b. Observe that B is actually a subspace of A. 

THEOREM 3.1. The following conditions are equivalent for some non-
negative integer k: 

(i) The signature of J given by (1.3) on B is k. 
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(ii) There is an s0 in (a, b) such that s0 ^ s < b implies that the signature 
of J given by (1.3) on A(e) is k. 

(iii) The point a has exactly a finite number k of nonsingular conjugate 
points on a < t < b. 

(iv) The point b has exactly a finite number k of singular conjugate 
points on a < t < b. 

(v) b is not conjugate to b. 

Theorem 3.1 above contains Theorem 4.4, p. 337, of Chellevold [1]. 
Let U(t) be a conjugate system satisfying Euler's equation 

(3.1) lR(t)Ü(t) + Q*(t)U(t)y = lQ(t)Ü(t) + P(t)U(t)~] 

and the conditions U(d) = 0, Ü(a) = I, det U(t) ̂  0 for t near b. Let us 
remark that there are J 's which do not possess such conjugate systems. 
For y in A and for t near b set 

(3.2) Sly(t), a] = y*(t){lR(t)Ü(t) + Q*{t)U{i)\U~ HOMO-

Let D be a subspace in A satisfying B ç D ^ A. The condition that 
liminff_^_ S\_y(t)9 à] ^ 0 for each y in D satisfying lim inf,_^_ J(y) \*a < oo 
is called the singularity condition relative to D and belonging to [a, b~\. 

THEOREM 3.2. Assume that s(B) is finite. Let D be any subspace with 
B ç; D S A. Let C be a subspace in B maximal relative to having J < 0. 
Let CJ = {x e A:J(x,y) = 0 for all y in C}. The following conditions 
are equivalent: 

(i) If x is in D n C J , then J{x) < oo implies lim infe_>b_ S\_x(e), a] ^ 0. 
(ii) If x is in D n C J , then J(x) ^ 0. 

(iii) The singularity condition relative to D holds; that is, if x is in D, 
then J(x) < oo implies lim infe^fc_ S\_x(e), a] ^ 0. 

THEOREM 3.3. Suppose that J(x,y) = lim infe_>b_ Je(x, y) is bilinear on 
the subspace D where B ç D Ç A. Assume that s(B) is finite. Let C be a 
subspace in B maximal relative to having J < 0. Let CJ = {x e A: J(x, y) = 
0 for all y in C}. Then s(D) = s(B) if and only if x in CJ n D implies 
J{x) ^ 0. 

COROLLARY. If J is bilinear on the subspace D with B ^ D ç A and 
s(B) is finite, then s(D) = s(B) if and only if the singularity condition relative 
to D and belonging to [a, 6] holds. 

The next theorem generalizes Theorems 2.3, 4.1, and 5.1 of Tomastik 
[7]-

THEOREM 3.4. There is a subspace C of finite dimension k in B with C 
maximal relative to having J < 0 and J ^ 0onCJ n D holds for a subspace 
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D with B ^ D Ç= A if and only if there are k conjugate points to b in (a, &] 
and the singularity condition relative to D and belonging to [a, Z>] is satisfied. 

COROLLARY. There is a subspace C of finite dimension k in B with C 
maximal relative to having J < 0 and J ^ 0 on CJ holds if and only if 
there are k conjugate points to b in (a, £] and the singularity condition 
relative to A and belonging to [a, b~\ is satisfied. 

COROLLARY. For any subspace D with B^D^A.J^OonD holds 
if and only if there are no conjugate points to b in (a, b~\ and the singularity 
condition relative to D and belonging to [a, b\ is satisfied. 
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