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THE ALGEBRA OF BOUNDED ANALYTIC FUNCTIONS 

BY T. W. GAMELIN 

Introduction. This survey features the algebra ff°°(D) of bounded 
analytic functions on a domain D. The central theme will be the interplay 
between classical function theory and functional analysis. 

Typically one learns about the spectrum of /r°(D), or some other 
abstract entity, by rephrasing the problem in terms of function theory and 
treating the reformulated problem with techniques of classical hard 
analysis. Problems of this sort have led to difficult and fecund work in 
hard analysis, the most notable example being Carleson's solution of the 
corona problem [6]. 

In the reverse direction, uniform-algebra techniques are beginning to 
yield modest but new results in function theory. An example [18] is the 
strong version of the Iversen-Tsuji theorem, valid for polydomains, 
which can be obtained from a statement concerning the Silov boundary of 
//°°(D). Moreover, the abstract concepts, such as "distinguished homo-
morphism," have served to enhance our understanding of the classical 
function theory. 

The Banach-algebra approach to HCG{D) really got under way during 
the Conference in Analytic Function Theory at Princeton University in 
1957. At that time, virtually nothing was known about the maximal ideal 
space J£(D) of H™(D). The problems brought to this conference included 
the following questions. Do there exist interpolating sequences in the 
open unit disc A for /7°°(A), that is, are there sequences S in A such that 
H°°(A)\S = *°°(S)? Does J((A)\A coincide with the Silov boundary of 
JFP°(A)? Is A dense in Jt{bs)°l This latter problem was christened the 
"corona problem," the "corona" being the part of Ji(A) which is not 
adherent to A. 

This area has seen extensive development since the 1957 conference, 
and our aim is to give an indication of where we stand in year 15. However, 
this is not to be a complete survey, and the selection of topics and of 
bibliographical references will be seen to be quite prejudiced. Many 
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interesting areas of research, such as the recent work on subalgebras of 
//°°(A) due to D. Sarason and others, and work on pointwise bounded 
approximation, are touched on only briefly, if at all. 

Most topics in this survey are covered in more detail in the expository 
lecture notes in the La Plata series [20]. For related articles of an 
expository or semiexpository nature, see [10], [21], [38] and [42]. 

NOTATION AND CONVENTIONS. By D we will denote a fixed bounded 
open subset of the complex plane C. Starting with §8, D will be connected. 
The open disc in C with center z and radius r is denoted by A(z; r). The 
open unit disc is denoted simply by A. The sup norm of a function ƒ over 
a set E is denoted by || ƒ ||£: 

11/11* = sup{ | / (z) | :ze£}. 

1. The spectrum of HGO(D). The algebra 7/°°(D) is a commutative 
Banach algebra, with the norm ||-||D of uniform convergence on D. The 
spectrum of H™(D), denoted by Jt(p), is the set of nonzero complex-
valued homomorphisms of Hco{D). Endowed with the weak topology 
determined by //°°(D), Ji(p) becomes a compact Hausdorff space. 

Each function ƒ e Hco(D) determines a continuous function ƒ on 
Jt{iy), defined by f(q>) = cp{ƒ), q> e Jt(p). The correspondence ƒ -» ƒ 
is the Gelfand transform, and it maps ff °°(Z)) isometrically onto a closed 
subalgebra of C{Ji(p)). 

The domain D can be identified with an open subset of Jt(D), by 
identifying each point z e D with the homomorphism cpz which evaluates 
ƒ e//°°(D) at z. Since f{çz) = f(z) for zeD, we can regard ƒ as a 
continuous extension of ƒ from D to Jt(D). We will drop the "hat", and 
regard the functions in H*°{D) as continuous functions on Ji{D). 

The extension of the coordinate function to Ji(D) is denoted by Z. 
It is easy to see that Z maps Ji{D) onto the closure D of D, so that M(p) 
is the disjoint union of the fibers 

Jt£D) = Z-\{Q\ ÇeD. 

If C e D, then Ji^D) consists of only the one point {q> J . We are interested 
in the fibers Ji^D) for Ç e dD, and we are particularly interested in relating 
the behavior on M^J)) of ƒ G W"ip) to the cluster behavior of ƒ at £• 

A point C G 3D is an inessential boundary point of D if every ƒ G H™(D) 
extends to be analytic at (. In this case, the fiber Ji^D) again consists of 
only the homomorphism <pc which evaluates the analytic extension of ƒ 
at £. The remaining boundary points are called essential boundary points, 
and these form a closed subset of dD. If £ is an essential boundary point, 
then Jt£B) is quite large. 



1973] THE ALGEBRA OF BOUNDED ANALYTIC FUNCTIONS 1097 

The corona problem, in the current context, asks the following. 
Corona problem. Is D dense in Jt(D)l 
The corona problem remains unsolved in this generality. While this 

is a very natural problem, it is only fair to say that the proof that D is 
dense in Jt(D) in any given case is certain to be more interesting and 
far-reaching than the fact itself. 

As mentioned earlier, the corona problem was solved affirmatively by 
L. Carleson [6] in the case of the open unit disc. In [30], L. Hörmander 
showed how the corona theorem could be reduced to the problem of 
solving a certain system of partial differential equations, with bounds on 
the solutions. This idea and other simplifications are incorporated into 
the proof of the corona theorem given in [8]. 

Carleson's theorem has been extended to various classes of planar 
domains, and all of the extensions depend on Carleson's original theorem. 
E. L. Stout [44] answered the problem affirmatively for finitely connected 
domains, and M. Behrens [3] found a class of infinitely connected domains 
for which the corona problem has an affirmative solution. Behrens' 
construction can be used to show that either the corona problem has an 
affirmative solution for all open subsets of C, or else it has a negative 
solution for certain relatively simple domains, obtained from the open 
unit disc A by excising a sequence of closed disjoint subdiscs which con­
verge to some prescribed point of dA (or of A). Recently J. Garnett (un­
published) has applied Vitushkin's techniques to widen the class of 
domains for which there is an affirmative solution to the corona problem. 

In [15] it is shown that the fiber Jt^D) depends only on the behavior of 
D near Ç e dD, so that the corona problem is a "local" problem. A 
consequence of this localization principle is that 

(1) Cl(ƒ, 0 = / W > ) ) , CedDJs H*>(D). 

Here Cl(/, £) is the cluster set of ƒ at £, consisting of all complex numbers 
w for which there is a sequence {zn} in D satisfying zn ~> Ç and f(zn) -> w. 
Since Cl(/, 0 can be reinterpreted as the range of ƒ on the adherence of D 
in Jt^D), the cluster value theorem (1) would be a trivial consequence of 
the density of D in Ji{D). 

The corona problem, when reinterpreted as a problem in function 
theory, asks whether, given fl9 . . . , ƒ „ e /f°°(D) such that 

(2) | / i | + . . . + I/J ^ 5 > o onD, 

there exist gl, . . . , gne H^iD) such that 

(3) Aflf! + • ' • + fnQn = 1. 

One can ask whether D has the following stronger property. 
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There exist constants c(n, <5, D), n ^ 1, ö > 0, such 
that if A, . . . , fneH™(D) satisfy (2), and | / j ^ 1, 
1 ^ y ^ /i, then there exist ^ , . . . , ^ „ 6 H™(D) satisfy­
ing (3) and |0,| S c(n, S9 D)9 1 £ j £ n. 

Carleson actually showed that the open unit disc has property (*), 
and he gave estimates for the constants appearing there. It is shown in 
[15] that finitely connected domains have property (*), and that the 
constants c(n, (5, D) can be chosen to depend only on «, <5, and the number 
of boundary components of D. If the constants associated with finitely 
connected domains can be selected to be independent of the connectivity 
of the domain, then the corona theorem is valid for all domains. Con­
versely, if the corona theorem is valid for all domains, then all D have 
property (*), and the constants appearing there can be chosen to be 
independent of D. 

2. More general domains. Suppose that R is a complex analytic variety 
with the property that Hœ(R) separates the points of R. The spectrum 
Jt{R) of H^iR) is defined as before, and the natural map R -* J?(R) is a 
continuous injection. It is not known, however, whether this map embeds 
R homeomorphically as an open subset of M(R). The answer is affirmative 
if JR happens to be an open subset of the extended complex plane, or of a 
compact Riemann surface S. Then there is a natural fibration of M{K) 
over the closure of R in S. The fiber over £ e S depends only on the 
behavior of R near £, so that problems involving Ji(K) can be quickly 
reduced to problems involving bounded open subsets of C. 

It is easy to find examples of domains R in Cn for which R is not dense in 
Jt(R)—any bounded domain which is not holomorphically convex will 
serve. E. Bishop (cf. [15]) constructed a one-dimensional analytic variety 
R which is not dense in Jt(R), and B. Cole (unpublished) has constructed a 
Riemann surface with the same property. Cole's example can be modified 
to provide an example of a bounded domain of holomorphy in C3 for 
which the corona theorem fails. Meanwhile the corona problem is not yet 
resolved for the unit poly disc or the unit ball in C2. 

For related work on other algebras of analytic functions in one and 
several complex variables, see [9], [30], [32] and [33]. 

3. Analytic structure in Jt{D\ A subset S of Jt(p) is an analytic disc 
if there is a continuous injection O of A onto 5, such that ƒ o <ï> is analytic 
on A for every ƒ G H°°(D). Analytic discs in the fibers Jt£A), Ç e SA, were 
discovered by I. J. Schark (cf. [28, p. 166]). K. Hoffman's extension (to 
logmodular algebras) of the Wermer embedding theorem (for Dirichlet 
algebras) shows that any "maximal analytic structure" in J?(A) is an 
analytic disc. These analytic discs are described by Hoffman [29], who 
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proves, among other things, that <p e JOJS) lies in an analytic disc if and 
only if cp belongs to the closure of an interpolating sequence in A. 

In [3], Behrens gives a reasonable description of the fibers Jt^(D) 
associated with certain infinitely connected domains D. He finds that these 
fibers are eye-boggling objects, and that there is a wide range of possibilities 
for their maximal analytic structures. Many problems arise in this 
connection. Does every fiber over essential boundary points of D contain 
an analytic disc? Does every distinguished homomorphism (to be defined) 
lie on an analytic disc? Is every analytic structure in Ji^D) one-dimen­
sional? 

Schark's idea serves also to embed bidiscs in the fibers over the 
distinguished torus of M(L x A). One can ask whether every maximal 
analytic structure in Jt{k x A) is a disc or a bidisc. 

4. Weak topologies for //°°(D). Let oD denote the restriction 
of the area measure a = dx dy to D. By the' weak-star topology of H^iD) 
we mean always the weak-star topology which 7/°°(D) inherits from 
L?{GD). A bounded net in //°°(D) is weak-star convergent if and only if it is 
uniformly convergent on each compact subset of D. The KreTn-Schmulian 
theorem shows that Hco{D) is a weak-star closed subalgebra of L°°(<7D). 
Consequently //°°(D) can be realized as the conjugate space of the quotient 
Banach space I}{GD)/\_I}(GD) n / /^(D) 1 ] , and the weak-star topology it 
inherits from L?((JD) coincides with the weak-star topology it enjoys as a 
conjugate space. 

There are a host of "weak" topologies of//°°(D), which coincide with 
the weak-star topology on bounded subsets of //°°(D). These are discussed 
in the survey article of L. A. Rubel [38]. One such topology, for instance, 
is the strict topology introduced by R. C. Buck [5], in which a net {/a} 
converges to ƒ if and only if hfa converges uniformly to hf for every con­
tinuous function h on D which vanishes on 3D. L. A. Rubel and J. Ryff 
[39] have shown that this topology coincides with the bounded weak-star 
topology of H^(D). One open problem along these lines is to give a 
tractable description of the Mackey topology of HQO{D). 

5. Distinguished homomorphisms. The homomorphisms cp e JÏ(D) 
which are weak-star continuous are called the distinguished homo­
morphisms of //°°(D). Every z e D is a distinguished homomorphism. 
It is easy to construct domains D for which there are distinguished homo­
morphisms not lying in D (see [41], [47]). It is proved in [22] that there is 
at most one distinguished homomorphism in any given fiber Jf^(D); call it 
cpc if it exists. Moreover, the following are equivalent, for ( e 3D: 

(i) There is a distinguished homomorphism cp^ e M^D). 
(ii) Jt^D) is not a peak set for #°°(D). 
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(iii) lim —~ f(z) dx dv 

DnA(C;e) 

exists for ail ƒ G Hœ(D) and is nonzero for some ƒ G //°°(D). 
(iv) If 0 < a < 1, and En is the annulus {an+1 ^ |z - CI S an}, then 

00 

Ia"W,\ f l )< oo. 
« = 1 

Here }>(£) is the analytic capacity of a set £ , defined to be the supremum 
of | ƒ '(oo)|, over all functions ƒ which are analytic off a compact subset of 
E and which satisfy | f\ ^ 1. The set of points Ç G <9D at which there are 
distinguished homomorphisms is an F^-set which, according to a result 
of A. M. Davie (unpublished), has zero analytic capacity. 

An analogue of the Browder metric density theorem shows that if <p^ 
is a distinguished homomorphism, then almost all sequences in D which 
tend to C must converge to ç>ç in the norm topology of H°°(D)*. It may 
occur, though, that there is no curve in D terminating at (, which con­
verges to (pç in the norm topology of 7/°°(D)*. One geometric condition 
which guarantees that a sequence {zn} in D tending to ( satisfies 
\\zn — <pç|| -> 0 is that 

d(z„dD)^c\zn-H 

where c > 0 is fixed, and "rf" denotes "distance." 
Another result from [22] is that if {zM} is a sequence in D which tends to 

C e 3D, then either {zn} has a subsequence which is an interpolating 
sequence, or else {zn} converges in the norm of H^fö)* to a distinguished 
homomorphism q>^ e Jf^(D). A typical problem relating cluster values and 
the fibers Ji^(D) is as follows. If cp^ is a distinguished homomorphism, and 
if ƒ G Hco(D) has a limit along a curve in D terminating at (, must that 
limit coincide with /(<pç)? Garnett (unpublished) has obtained an 
affirmative answer providing the curve is sufficiently smooth. 

Some of the basic results concerning distinguished homomorphisms 
carry over to a more general setting. One can replace D by a bounded 
Borel subset E of C, and Hœ(D) by a weak-star closed subalgebra of 
L°°((x£) which is T-invariant, that is, which is invariant under the "Tg"-
operators used in rational approximation theory. 

6. The Silov boundary. A boundary for Hco{D) is a subset E of Ji{D) 
with the property that every ƒ G Hœ(D) attains its maximum modulus on 
E. According to Silov's theorem, there is a minimal closed boundary for 
if°°(D), the Silov boundary of i/°°(D), which will be denoted by ni(D). 
It is easy to show that Z(ui(D)) coincides with the set of essential boundary 
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points of D. Since the closure of D in Jt(D) is a boundary for H°°(D), ui(D) 
is adherent to D. 

The Silov boundary in(D) for arbitrary D is studied in [17]. There it is 
shown that if u is a continuous real-valued function on m(Z>), then there 
is ƒ 6 //°°(D) such that | ƒ | = eu on m(D). Furthermore, ui(D) is extremely 
disconnected (the closure of every open subset is open), and the adherence 
in rn(D) of any subset of D is a clopen subset of in(D). One further fact, 
which places topological restrictions on III(D), is that there is a (finite) 
measure whose closed support coincides with ui(D). In fact, the following 
simple lemma plays a crucial role, so we give a complete proof. 

LEMMA. Suppose D is connected, and z0 e D. If v is a finite measure on 
ui(D) such that f(z0) = j ƒ dv for all ƒ e Hœ(D), then the closed support of 
v coincides with IH(D). 

PROOF. Let E be the closed support of v. Define 

Then u is analytic on D, and u(z0) = 1. If Ç e£> and ƒ e//°°(D), then 
(Z - ZQX/ - M))/(Z - 0 belongs to Hœ(D) and vanishes at z0, so that 

Z ~ Zv [ / - /(C)] dv = 0 
C 

Consequently 

u{0f(0 = 
z-c 

Z^fdv, feH°>iP). 

If i/(0 # 0, this yields an estimate ofthe form | / ( 0 | ^ c \\f\\EJ eH™(D). 
Applying this inequality to ƒ", taking nth roots, and letting n -> oo, we 
obtain | / ( 0 | S ll/ll£, f e H">{D\ whenever u(Q * 0. The estimate 
persists for all £ G D , SO that | | / | |D - || ƒ ||£ for all ƒ e #°°(Z)), and £ i s a 
boundary for Hco{D). Since the Silov boundary is minimal, £* coincides 
with m(D). Q.E.D. 

Now we consider the Dixmier decomposition theorem [12] for 
extremely disconnected spaces. In view of the preceding lemma, the 
Dixmier decomposition specializes in the case at hand to the following. 
There is a unique decomposition 

(4) m(D) =T0vTl9 

where T0 and Tx are disjoint clopen subsets of ni(D) with the properties 
that T0 has a dense meager subset, and Tx is the closed support of a finite 
positive normal measure v. (By normal, we mean that v(£) = 0 for every 
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set ii with empty interior.) The inclusion CC^) -• L°°(v) is then an isometric 
isomorphism of the two algebras, so that Tx is homeomorphic to the 
spectrum £(v) of L°°(v). 

A discussion of the relevant facts concerning the Silov boundary of 
#°°(A) is found in [28]. Fatou's theorem allows us to identify #°°(A) with 
a subalgebra of L°°(d0) ^ CÇL(d6)), where d6 is the arc length measure on 
<9A. If u is a continuous real-valued function on E(d0), then there is an 
invertible function ƒ £ ^°°(A) such that | ƒ | = eu on l{d&). It follows that 
III(A) ^ X(d0). Since the lift of d6 to T(d9) is a normal measure on m(A), 
the component T0 of (4) is empty, and IH(A) coincides with 7\. 

What is the adherence in ni(A) of a subset S of A? It is precisely that 
clopen subset of in(A) which corresponds to the Borel subset E of dA 
consisting of the nontangential limit points of S. In particular, we have the 
Brown-Shields-Zeller theorem (suggested by G. Piranian; see [4]), that 
almost all (d6) points of dA are nontangential limit points of S if and only if 
IH(A) is adherent to S, that is, if and only if || ƒ ||s = || ƒ ||A for all ƒ G #°°(A). 

There is an example in [17] of a domain, rather complicated, for which 
m(D) has a dense meager subset, so that T0 = m(D), and Tt is empty. 

One open problem along these lines is to identify the normal measure 
v o n T i . In particular, can v be taken always to be the restriction to 7\ of 
the "harmonic measure" on Jt{p)1 

The bidisc algebra //°°(A x A) is isometrically isomorphic to a sub­
algebra of L?(m), where m is the area measure on dA x dA. Let X be the 
compact space obtained from the spectrum Z(m) of I?(m) by identifying 
points which are identified by /T°(A x A). Then X can be regarded as a 
subset of M (A x A), and X contains the Silov boundary ui(A x A). The 
work of R. M. Range and J.-P. Rosay (see [34]) can be sharpened to show 
thatm(A x A) has zero mass for the lift of the measure m to X. Otherwise, 
virtually nothing is known about ui(A x A). One might begin by asking 
how disconnected m(A x A) is. 

7. Relation to cluster value theory. It turns out that the restriction of 
#°°(D) to a fiber Ji^D) is a closed subalgebra of C{Jf^{D)). Its Silov 
boundary is denoted by uiç(D). The principal link between the abstract 
approach and cluster value theory is the identity 

(5) in^(D) = ^ c ( D ) n m ( D ) , 

valid whenever £ is an essential boundary point of D. The difficult inclusion 
in (5) is proved in [22], and the reverse inclusion, which is valid for domains 
in Cn, is noted in [18]. 

The identity (5), together with the elementary Banach-algebra principle 
to the effect that "the range on the Silov boundary includes the boundary 
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of the range," yields information on the cluster behavior of analytic 
functions. One simple conclusion which can be drawn from (5), and which 
turns out to apply to the Ahlfors function and other extremal functions, is 
the following. If ƒ G //°°(D) is unimodular on ui(D), and if ( is an essential 
boundary point for D, then either 

lim \f(z)\ = 1, or Cl(f 0 = 2 (the closed unit disc). 

Theorems on omitted values also can be linked to the abstract approach. 
The simplest theorem along these lines asserts that if ƒ e //°°(D) and 
C G 3D, then C\(f £)\/(ruc(D)) is an open subset of C, and, with the 
exception of a subset of zero analytic capacity, every value in this set is 
attained by ƒ on D infinitely often in any neighborhood of Ç. 

In [18], the identity (5) is established for polydomains in C \ There it is 
shown how (5) leads to strong versions of the Iversen-Tsuji theorem on 
cluster values. The version of the theorem obtained for polydomains is 
described as follows. 

Let Q = Dx x • • • x Dn be a polydomain in Cw, and let n:An -> Q be 
the universal covering map. A conformai ray in Q is the image under n of a 
radial segment {(rew\ . . . , reWn):0 = r < 1}. The family of conformai 
rays has a natural measure inherited from volume measure on (dA)n. 
Almost all conformai rays terminate in 3Q, and each ƒ G 7/°°(Q) has a 
limit along almost all conformai rays. 

Now let ƒ G //°°(Q), and let Cj be an essential boundary point of Dj9 

1 = j ^ n. The theorem asserts that if there is a neighborhood Fin dQ of 
C = ( d , • . • , Cn)

 s u c n t n a t the limit of ƒ along almost all conformai rays 
terminating in V is bounded in modulus by M, then 

lim sup \f(z)\ = M. 
D3z^i 

An open problem is to determine to what extent there is a version of 
Iversen's theorem valid for arbitrary domains in Cn. 

8. Extremal problems. In the remainder of this report, we assume that 
D is connected. Fix z0e D, and consider the extremal problem: 

(f. to maximize |/ r(z0)|, among all ƒ G Hœ(D) which 
() satisfy 11/11 S 1. 

The extremal function G for (6), normalized so that G'(z0) > 0, is 
unique, and it is called the Ahlfors function for D. The Ahlfors function G, 
and the corresponding extremal value G'(z0), play an important role in 
function theory and in approximation theory. 

In the case that dD is analytic, L. Ahlfors [1] showed that G extends 
analytically across dD, and G has unit modulus on dD. More generally, if 



1104 T. W. GAMELIN [November 

ôD contains a free boundary arc, then G extends continuously to that arc 
and has unit modulus there [13]. The Ahlfors function tries hard to be 
unimodular on the boundary of arbitrary domains. The following key 
theorem to that effect was obtained by S. Fisher [14]. 

THEOREM. The Ahlfors function for a bounded domain D in C has unit 
modulus on the Silov boundary of /700(D). 

PROOF. Evidently G'(z0) is the norm of the linear functional f-+f'{z0) 
on //°°(D). By the Hahn-Banach theorem and the Riesz representation 
theorem, there is a measure n on rn(D) such that \\n\\ = G'(z0) and 

f'{z0) = ƒƒ<*;, ƒ e #°°(D). If v = (Z - z0)ih then f(z0) = j ƒ dv for all 
ƒ G Hco{D) so that our lemma (§6) shows that the closed support of v, and 
hence the closed support of n, coincides with ui(D). The chain of in­
equalities G'(z0) = j G dn S j \G\ d\rj\ ^ ||rç|| = G\z0) shows that \G\ = 1 
a.e. (dri), so that \G\ = 1 on m(D). Q.E.D. 

Incidentally, the preceding proof also establishes the uniqueness of the 
Ahlfors function. Indeed, if G0 and Gx are normalized extremal functions 
for (4), then any convex combination of G0 and Gx is extremal. By the 
theorem, any convex combinations of G0 and Gt is unimodular on m(D). 
It follows that G0 = Gx on m(D), and hence on D. 

Combined with the results on cluster value theory described in the 
preceding section, Fisher's theorem yields information on the Ahlfors 
function which is already sharper than the information which had been 
obtained by classical means. 

Fisher's theorem can be extended to a wide range of extremal problems. 
One class of such extremal problems is described as follows. 

Let K be a compact subset of D. A linear functional on Hœ(D) is 
K-continuous if it is continuous with respect to the topology of uniform 
convergence on K. 

Fix K-continuous linear functional A, L l 5 . . . , Lm on /f°°(D), and fix 
complex numbers ax,. . . , am. Consider the following extremal problem of 
"Pick-Nevanlinna" type: 

, . to maximize Re A( ƒ), among all ƒ G//°°(JD) which 
1 } satisfy || ƒ || S 1 and Lj(f) = aj9 1 £ j £ m. 

It is shown in [16] that if A is not a linear combination of L l 5 . . . ,Lw ,and 
if there is at least one competing function for (7), then there is a unique 
extremal function for (7). Moreover, if K does not separate 3D, then the 
extremal function has unit modulus on the Silov boundary m(D) of 
//°°(D), and it extends analytically across any free analytic boundary 
arcs for D. 

9. Dual extremal problems. Suppose that dD is analytic, that is, that 
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dD consists of a finite number of disjoint analytic closed Jordan curves. 
Then there is an isomorphism L -> L between K-continuous linear 
functional L on H™(D), K running over compact subsets of D, and germs 
L of analytic functions on C\D which vanish at oo. If ^ is any measure on 
K which represents L, then L is given by 

=\i L(C) = | ^ , ttK. 

From L we can recover L by the formula 

Uz)f(z)dz, feff°"(D), L(f) = -^-. 
r 

where T is a cycle in D which surrounds the singularities of L. 
Let d \z\ denote the arc length measure on dD, and denote by H\d \z\) 

the closure in I}(d \z\) of the space of functions which are analytic on D. 
With the extremal problem 

/ 0 . to maximize Re L(f), among ƒ G H*°(D) which satisfy 
(8) I I Z - I I ^ I , 

we associate the dual extremal problem 

(9) to minimize |L(z) - h(z)\ d |z|, among all h e H\d \z\). 

In other words, the dual extremal problem is to compute the distance 
from L to Hx(d |z|), and this is equivalent to the following: 

. to minimize \g(z)\ d \z\, among all functions g analytic 

near dD such that g — L extends analytically to D. 

The extremal functions for (10) are called dual extremal functions. 
They always exist ; and the dimension of the convex set of dual extremal 
functions does not exceed m — 1, where m is the number of boundary 
curves of D. The dual extremal function is unique just as soon as the 
extremal function for (8) is not constant. If L is K-continuous, where K 
does not separate dD, then the dual extremal function g is analytic across 
dD, and it satisfies g(z)G(z) dz ^ 0 along dD, where G is the extremal 
function for (8). Most of these facts are covered in [20]. For dual extremal 
problems on Riemann surfaces, see [2] and [36]. 

The dual extremal function associated with the functional L(f) = 
f\z0) is called the Garabedian function. It is analytic on D\{z0}, and it has 
a double pole at z0. The Garabedian function is introduced in [23], and 
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studied in [13] and [26]. Short expository accounts are found in [7] and 
[25]. 

The role played by dual extremal functions for arbitrary domains has 
not been developed. Recently E. Smith [43] settled a problem left open 
by S. Ya. Havinson [26], proving that if domains Dn with analytic 
boundaries increase to an arbitrary domain D, then the Garabedian 
functions of the Dn converge normally. The limit function depends only on 
D and on the point z0, and it is accordingly called the Garabedian function 
of D. In order to study the subadditivity problem for analytic capacity, 
Smith had been led to investigate the dependence of the Szegö kernel 
function on certain perturbations of domains with analytic boundaries. 
The result on the Garabedian function dropped out as a special dividend. 
There is now the problem of simplifying Smith's proof, and of freeing the 
result from Hubert space considerations, in order to extend the theorem 
to more general extremal problems. 

ADDED IN PROOF. A simple proof, which still depends on Hubert space 
considerations, has been given by N. Suita, On a metric induced by analytic 
capacity, Ködai Math. Sem. Rep. 25 (1973), 215-218. 

10. Point wise bounded approximation. Let E be an arbitrary subset of 
3D, and consider the following problem. 

When can every ƒ € 7/°°(D) be approximated pointwise 
( . on D by a sequence {fn} in //°°(D) such that each fn 

extends to be analytic in a neighborhood of E, and 

II/J ^ ll/ll-
The usual strategy for approaching this problem is to use Vitushkin's 
constructive techniques to find {ƒ„} as above, except satisfying only 
| | / J ^ c ll/ll, and then to use a separation argument to reduce the 
norms. For instance, one can show [11, Theorems 2.2 and 8.3] that if a 
capacity estimate of the form 

y(A(z; Ô)\D) ̂  cy(A(z; rô)\{D u E)) 

holds for z e £ , then (11) is valid. Here c > 0 and r ^ 1 can depend on z, 
and the estimate need hold only for "most" z e E. For more on this 
aspect of the algebra //°°(D), see the references given in [21]. Here we 
confine ourselves to an indication of one application of these techniques 
to extremal problems. 

An affirmative answer to (11) allows one to approximate extremal 
functions for D by extremal functions for domains containing D u E. 
This approach is used in [20] to prove that if the harmonic measure for D 
is carried by the union of an at most countable number of boundary 
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components of £>, then the Ahlfors function G for D is inner; that is, the 
composition G o % of G with the universal covering map 71: A -> D has 
radial boundary values of unit modulus a.e. (dO). Without the hypothesis 
on the harmonic measure, the Ahlfors function need not be inner, and an 
example is given in [17] of a domain D with Ahlfors function G satisfying 
|G o 7c| < 1 a.e. (dO) on dA. 

In addition to determining for which D the Ahlfors function G is inner, 
there is the problem of determining when G o n is a Blaschke product. 
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