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1. The automorphism group T(P) of a partial order P is the collection 
of all order preserving permutations (automorphisms) of P, a subgroup of 
the symmetric group on P. If P and g are partial orders then P x g 
becomes a partial order by reverse lexicography: (p, q) < (p', q') if 
q < q' or q = q' and p < p'. If ƒ is a function whose domain contains the 
element a, we use af to denote the image of a under ƒ. 

THEOREM 1. T(P x g) contains an isomorphic copy of T(P) wr T(g), a 
nonstandard wreath product of T(P) by T(Q). 

PROOF. Let (fc, ƒ ) be an element of T(P) wr T(g), with ƒ : g -> T(P) and 
è e T(g), where T(g) may be identified with a subgroup of AutQ^Q T(P)). 
The action of b on ƒ is defined by g(ƒ6) = (qb'^f Define 

4>:r(P)wrr(e)-+r(p x e) 
by 

(P, «)[(*, ƒ)*] = (?[«#] ,«*)• 

It is not difficult to show that <j> is an embedding. 
DEFINITION. T(P X g) is j8-imprimitive if the sets P x {<?}, q e g , are 

sets of imprimitivity (i.e. if for all a e T(P x g), (pi, g)a = (pi, q') and 
(p2, g)a = (p'2, <?") implies g' = q"). 

The author wishes to thank Jack Sonn for simplifying the proof of the 
sufficiency of the following theorem. 

THEOREM 2. T{P x g) ^ T(P) wr T(g) *ƒ O/K/ only if T(P x g) is 
fi-imprimitive. 

PROOF. If 0 is an isomorphism then every a G T(P X g) behaves 
algebraically like one (6, ƒ) G T(P) wr T(g), and jS-imprimitivity follows 
from the definition of (b, ƒ). Conversely, if T(P x g) is j8-imprimitive, 
then each a G T(P X g) induces an a* G T(g) and the mapping a -• a* is 
an epimorphism. It follows that the diagram 

i - r(P) - r(p x e) - IXC) - i 
Il * î II 

l - r(P) -+ r(F) wr r«2) -> r«2) -> 1 

,4MS (MOS) swè/ect classifications (1970). Primary 06A10; Secondary 05C25. 
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is commutative with exact rows and, by the five lemma, (f) is an iso­
morphism. 

THEOREM 3. If P is a partial order and P° is the partial order obtained by 
adjoining a universal lower bound to P, then T(P°) ^ T(P). 

THEOREM 4. If P is a finite partial order with universal lower bound and 
Q is a finite partial order, then T(P x Q) is fi-imprimitive. 

The proof is by induction on h(q), h being the height function on 
Q:h(q) = sup{lengths of maximal subchains from qo to q}, where the 
supremum is taken over all minimal elements qo in g , for which qo S <?• 

Theorem 4 tells us that, at least in the finite case, we can be certain that 
the automorphism group on P x Q is the wreath product T(P) wr T(Q) 
if only P has a universal lower bound, and if P does not, then by adjunction 
of a lower bound, that wreath product is obtained (Theorem 3). Details of 
the proofs may be found in [1] or [2]. 

2. Having obtained a wreath product it is natural to ask whether the 
standard wreath product can be obtained (as an automorphism group of a 
partial order). Given an arbitrary group A with a well-ordered generating 
system {ay,j e J}, Frucht [5] has shown there is a partial order 0>A for 
which T(Q>A) = A. Namely <X>̂  = A x (2 + J) with 

(a, i) < {a J), a e A and i < j < 2 + J, 

(ata, 1) < (a, 2 + j), a e A and i ^ j < 2 + J. 

Using Frucht orders O^, €>B for two groups A and J5, with generating 
systems of order types J, J, respectively, we next construct a partial order 
whose automorphism group is the standard wreath product A j B, and 
which is more economical than the Frucht order for A \ B. 

DEFINITION. A partial order P is called uniform if (i) every subset of P 
has minimal elements and (ii) if p, p' eP such that h(p) = h(p'), where h is 
the height function, then p and p' are in the same orbit of T(P). 

Note that the orbits of T(P) are well-ordered; we denote the minimal 
orbit by ©p, or if no ambiguity can arise, by ©. As an important example, 
Frucht orders are uniform. 

DEFINITION. If P and Q are uniform partial orders, we define 

P\Q = (P x 0 ô ) u ( e - © ô ) , 

with the order in P x ©Q determined by that of P, the order in Q — ©Q 
remaining unchanged, and (p, r) < qiîr < q in Q. 

While P | Q is a uniform partial order, it is not in general true that 
T(P \ Q) is a wreath product. However, if P is a Frucht order, we do obtain 
a wreath product, and if g , too, is a Frucht order, a standard wreath 
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product is obtained. We prove the latter first. 

THEOREM 5. T(<bA \ OB) £ A \ B. 

PROOF. Major steps in the proof are listed here. We use k generically to 
denote an element of W = T(®A \ OB). Note that a typical element of 
O^ \ <!>B has the form {{a J), (6, 1)), where; < J, a e A, b e B, if it belongs 
to <&A x &B and the form (fc, i)> where beB and 1 < i < I if it belongs to 
OB — ©B, and where ©B = B x {1} is the minimal orbit of OB. 

(i) If ((e, 1), (b, l))/l = ((a, 1), (b', 1)), where e = e A is the identity of A, 
aismA,bandb'inB,thQn{(g,j),(b, 1))A = ({ga,j),(b\ 1)) for all j < 2 + J 
and all # in A, and (b, i)A = (b\ i) for all i with 1 < i < 2 + L 

(ii) K = {fe e VF; (fc | <!>A x ©B)TTI = 7ii}, where rci is the projection on 
the first component, is a subgroup of W isomorphic to B. 

(iii) F = {f e W; (f \ Q>A x &B)U2 = ni\ is a normal subgroup of W 
isomorphic to YibeB ^b, where Ab ~ A for each b in J5. 

(iv) VF is a semidirect product of F by K, and so is (isomorphic to) a 
semidirect product of J\b A and B. 

(v) The mapping a :X -> Aut(F) defined by /(fca) = /c_1/k is an 
embedding. 

Hence W = T(OA \ OB) is the relative holomorph of Ylb A by 5 , 
i.e. the standard wreath product of A by B. We point out that the groups 
T(<bA \ OB) and A \ B are not isomorphic as permutation groups, but only 
as groups. 

COROLLARY. For k e r ( 0 ^ \ OB), k induces a map A* e T(OB) such that 
A* | OB — ©B = k | OB — ©B. TTie mapping k -> A* is an epimorphism. 

The proof of the next theorem mimics that of the preceding one. Here 
only one of the uniform partial orders is a Frucht representation. 

THEOREM 6. Lef Q be a uniform partial order. Let A be a group with 
Frucht representation O^. Then the automorphism group of O^ } Q is a 
wreath product (in general, nonstandard) of A by T(Q). 

Observe that T(0^ \ Q) is a standard wreath product if and only if T(Q) 
is isomorphic as a permutation group on ©Q to a Cayley representation. 
Details of the proofs of Theorems 5 and 6 may be found in [1] or [3]. 

3. DEFINITION. Let A be a group and P a uniform partial order with 
minimal orbit © such that T(P) ^ A. A group B is said to be obtainable 
from A if there exist a nonempty set S and a surjection ƒ :© -» S such that 
if Q = P u S with p > s if and only if f(p) = s, for p in P and s in S, then 
r(g) = B. 

What is being done here is that a new family of minimal orbits is 
adjoined to a uniform partial order with each member of the original 
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minimal orbit having a unique predecessor. (Note that the resulting 
order need not be uniform.) We will write the image of/? in© under ƒ as 
ƒ(/?) contrary to our usual notation. 

THEOREM 7. IfB is obtainable from A, then B is embedded as a subgroup 
of A and if\A\ ^ 2, then every subgroup o f A is obtainable from A. 

PROOF. If B is obtainable from A, then identifying A with T(P) and B 
with T(<2), the mapping \jj\B -* A defined by bxj/ — b | P, the restriction 
of b to P, is an embedding. 

Conversely, let B be a subgroup of A and <!>A the Frucht representation 
of A. Let S = {A — B} u B; i.e. the elements of S are the points of B and 
the set A - B. Define f:A x {1} -• S by / (a , 1) = a if a e B, and 
/ (a , 1) = A - B if a <£ B. If Q = <$>A u S with (a, 1) > /(a , 1), then 
T(Q) ^ i?. In particular, \// : T ( 0 -> ^ defined as above is an isomorphism 
o f r ( Ô ) o n t o £ c A 

4. A theorem of Kaloujnine and Krasner [6] states that every extension 
of A by B can be found embedded in A \ B. Using Theorems 5 and 6 we 
indicate here a natural way of producing partial order representations for 
those extensions which are split, i.e. for the semidirect products of A by B. 

Specifically, if <!>A \ <&B is the wreath product representation of A \ B 
and D = BA is a semidirect product of A by B with homomorphism a, we 
let S = A and ƒ : © - > £ by f ((a, 1), (ft, 1)) = a(fea), where 

0 = (A x {1}) x (5 x {1}) 

is the minimal orbit of Q>A \ <&B. We have a:B -> Aut(A), and S and ƒ 
define a new partial order Q as in the definition of "obtainable". From 
Theorem 6, the automorphism group of Q is (isomorphic to) a subgroup 
of the automorphism group of ®A \ OB, that is a subgroup of A \ B. We 
show next that the new automorphism group is isomorphic to D. 

THEOREM 8. Let Dbea semidirect product of A by B with homomorphism 
a. Let <5>A and <DB be the Frucht orders of A and B respectively. Let 
Q = q>A \ ®B u A with ((a, 1), (ft, 1)) > a(boc). Then T = T(Q) s D. 

The proof is accomplished in a series of steps showing that (1) T is 
(isomorphic to) a subgroup of A j B; (2) for p e T, if ((eAi 1), (eB, \))p = 
((y, 1), (z, 1)), where eA, eg are the identities of A, B respectively, y e A, 
z e B, and if ao = y(za), then ^ p = y(za) = ao and ap = a(za)<zo for 
every a in A; (3) if ((a, 1), (ft, l))p = ((a', 1), (ft', 1)), where a, a' are in A and 
b, ft' are in B, then a' = a\_ao(bf~1a)~] and(6-1ft')a = za; (4) ,4 is embedded 
as a normal subgroup of T and B a s a subgroup of T; and finally (5) 
T ^ BA = D. 

file:///jj/B
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5. Having constructed a partial order Q whose automorphism group is 
the semidirect product of A by B, we next consider the behavior of the 
automorphism group of Q when we modify Q by procedures similar to 
those used in constructing Q itself. Details of the proofs of the following 
theorem and the preceding one may be found in [1] or [4]. 

THEOREM 9. Let Dbea semidirect product of A by B with homomorphism 
a (cc:B -> Aut(/4)), and let Q be the partial order representation of D 
constructed in Theorem 8. Let C be a group with Frucht representation Oc, 
p:A -> Aut(C) a homomorphism, and P = C u Oc { Q with ((c, 1), a) > 
c(ap).ThenifT = T(P),wehaveT £ B AC, where B = {beB;(ba)p = p} 
is a subgroup of B with (bitfiCi)(b2#2C2) given by 

(biaiCi)(b2a2C2) = bib2(ai(b20t))a2(ci(a2P))c2. 

6. Acknowledgement. The author wishes to thank David Lubell for 
guidance in the developments of the contents of this paper. 
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