BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 5, September 1973

A SMASH PRODUCT FOR SPECTRA

BY HAROLD M. HASTINGS¹

Communicated by Hyman Bass, January 2, 1973

ABSTRACT. We shall show that the smash product for pointed CW complexes induces a smash product \land on the homotopy category of Adams's stable category with the following properties. \land is coherently homotopy unitary (S⁰), associative, and commutative, \land commutes with suspension up to homotopy, and \land satisfies a Kunneth formula.

Introduction. Precisely, we shall show that the homotopy category of a technical variant of Adams's stable category [1], a fraction category of CW prespectra equivalent to that of Boardman [3], [8], admits a symmetric monoidal structure in the sense of [4].

Whitehead's pairings of prespectra [9] and Kan and Whitehead's nonassociative smash product for simplicial spectra [6] were the first attempts at a smash product. Boardman gave the first homotopy associative, commutative, and unitary smash product in his stable category [3]. Adams has recently obtained a similar construction [2].

We acknowledge with thanks many helpful conversations with Professors Alex Heller and John C. Moore. Details and applications will appear elsewhere.

1. The interchange problem. A S^k -prespectrum X consists of a sequence of pointed spaces $\{X_n \mid n \ge 0\}$, together with inclusions $X_n \wedge S^k \to X_{n+1}$. Consider $S = \{S_n = S^{nk}\}$ as a ring with respect to the smash product of spaces. Then X is a right S-module.

Construction of a homotopy associative smash product for S^k -prespectra requires permutations π of $S^k \wedge \cdots \wedge S^k$. Since S is not strictly commutative, but only graded homotopy commutative, this requires defining suitably canonical maps of degree -1 (for k odd) and homotopies $\pi \simeq \pm id$.

We avoid sign problems by using S^4 -prespectra and define *canonical* homotopies H_{π} as follows. Make the standard identifications

 $S^{4k} \cong S^4 \wedge \cdots \wedge S^4 \cong I^4/\partial I^4 \wedge \cdots \wedge I^4/\partial I^4 \cong I^{4k}/\partial I^{4k} \cong D^{4k}/S^{4k-1}.$

Then π simply permutes factors of $C^2 \times \cdots \times C^2$. Hence $\pi \in SU(2k)$.

AMS (MOS) subject classifications (1970). Primary 18D45, 55J99; Secondary 55J10, 55J25.

Key words and phrases. Symmetric monoidal category, Adams's stable category, Boardman's stable category, special unitary group, Kunneth formula.

¹ Partially supported by a NSF institutional grant.

Since SU(2k) is path connected and simply connected, there is a unique homotopy class of paths $[\Gamma_{\pi}]$ in SU(2k) with $\Gamma_{\pi}(0) = \pi$, $\Gamma_{\pi}(1) = e$. Define homotopies $H_{\pi}: S^{4k} \wedge I^* \to S^{4k}$ by $H_{\pi}(s, t) = \Gamma_{\pi}(t)(s)$. Then $[H_{\pi}]$ is the required homotopy class (rel the endpoints) of canonical homotopies.

THEOREM 1. Let π and π' be permutations of S^{4k} . Let H_{π} and $H_{\pi'}$ be canonical homotopies. Then $H_{\pi'}(H_{\pi}(s, t), t): S^{4k} \wedge I^* \to S^{4k}$ is a canonical homotopy for $\pi'\pi$.

Adams solves the interchange problem directly for S^1 -prespectra by an argument involving special classes of paths in SO.

2. The Adams completion. Give S^4 the CW structure with one 4-cell and one 0-cell. Give [0, n] the CW structure with 0-cells $0, 1, \ldots, n$.

DEFINITION 2. A prespectrum consists of a sequence of pointed CW complexes $\{X_n \mid n \ge 0\}$, together with inclusions as subcomplexes $X_n \wedge S^4 \to X_{n+1}$. A strict (weak) map of prespectra $f: X \to Y$ consists of a sequence of continuous maps $\{f_n: X_n \to Y_n\}$ such that $f_{n+1} = f_n \wedge S^4$ (resp. $f_{n+1} \simeq f_n \wedge S^4$) on $X_n \wedge S^4$. Ps is the category of prespectra and strict maps.

DEFINITION 3 (ADAMS). A subspectrum $X' \subset X$ is cofinal if for each cell σ of X a sufficiently high suspension of σ is in X'.

DEFINITION 4 (ADAMS). Ad is the category of prespectra in which maps from X to Y are diagrams $X \supset X' \rightarrow Y$ in Ps with X' cofinal in X.

Formally, Ad is the right fraction category [5] of Ps in which cofinal inclusions are invertible. Morphisms $X \supset X' \xrightarrow{f} Y$ and $X \supset X'' \xrightarrow{g} Y$ are equal if f = g on $X' \cap X''$.

DEFINITION 5. Let X be a prespectrum. Given a monotone unbounded sequence of nonnegative integers $\{j_n \mid n \ge 0, j_n \le n\}$, define a prespectrum DX by $(DX)_n = X_{j_n} \wedge S^{4(n-j_n)}$, with inclusions $(DX)_n \wedge S^4 \rightarrow (DX)_{n+1}$ defined so that $DX \subset X$.

Then D extends to a functor (*destabilization*) on Ps, and there are natural cofinal inclusions $DX \subset X$.

There are smash products \land : Ps, CW \rightarrow Ps, and \land : Ad, CW \rightarrow Ad; these are defined degreewise.

DEFINITION 6. Maps $f, g: X \rightrightarrows Y$ in Ps (Ad) are homotopic if there is a map $H: X \land I^* \to Y$ in Ps (resp. Ad) with $H | X \land 0^* = f, H | X \land 1^* = g$.

Homotopy has the usual properties. Denote the resulting homotopy categories Ht(Ps), Ht(Ad).

3. Smash products. We shall define a family of smash products \wedge on Ht(Ad).

DEFINITION 7. Let X and Y be prespectra. Given a sequence of pairs of nonnegative integers $\{(i_n, j_n) \mid n \ge 0, i_n + j_n = n, \text{ and } \{i_n\} \text{ and } \{j_n\}$ are monotone unbounded sequences}, let $X \land Y$ be the prespectrum with $(X \land Y)_n = X_{i_n} \land Y_{j_n}$; the required inclusions are induced from X and Y.

Then \wedge extends successively to bifunctors on Ps, Ad (since the smash product of cofinal inclusions is cofinal) and Ht(Ad).

4. Uniqueness and the symmetric monoidal structure.

DEFINITION 8. Let X be a prespectrum. A permutation Π of DX consists of a sequence of maps $\Pi_n = X_{jn} \wedge \pi_n : (DX)_n = X_{jn} \wedge S^4 \wedge \cdots \wedge S^4 \rightarrow$ DX_n , where each π_n is a permutation of $S^4 \wedge \cdots \wedge S^4$. If $g = \{g_n : (DX)_n \rightarrow$ $Y_n | g_{n+1}$ extends $g_n \wedge S^4$ up to permutation $\}$, call g a permutation map.

PROPOSITION 9. Permutation maps are weak maps, where the required homotopies $H_n:(DX)_n \wedge S^4 \wedge I^* \to Y_{n+1}$ are induced by canonical homotopies (§1).

Also, permutation maps may be destabilized and are closed under the following *composition*: $f:DX \to Y$ and $g:D'Y \to Z$ yield $gD'(f):D'DX \to D'Y \to Z$. Two permutation maps $f, g:DX \rightrightarrows Y$ differ by a permutation if for some permutation Π of $DX, g = f \Pi$.

THEOREM 10. Any two smash products \land and \land' on Ht(Ad) are naturally isomorphic.

PROOF. There are natural destabilizations and permutation classes of permutation maps $D(X \land Y) \rightarrow X \land' Y$, $D'(X \land' Y) \rightarrow X \land Y$. The composites $D'D(X \land Y) \rightarrow X \land Y$ and $DD'(X \land' Y) \rightarrow X \land' Y$ differ from the respective (cofinal) inclusions by permutations. Thus it suffices to prove the following.

LEMMA 11. A permutation commutative diagram of permutation maps $DX \rightarrow Y$ induces a commutative diagram in Ht(Ad).

We shall sketch a proof in §6.

THEOREM 12. There are natural maps in Ht(Ad),

$X \to X \land S^0 \to X$	(unit),
$a:(X \land Y) \land Z \to X \land (Y \land Z)$	(associativity),
$c: X \land Y \to Y \land X$	(commutativity),

which form a symmetric monoidal category.

PROOF. There are natural destabilizations and permutation classes of permutation maps $DX \rightarrow X \land S^0 \rightarrow X$,

 $a': D(X \land Y) \land Z \to X \land (Y \land Z),$

948

and

$$c': D(X \land Y) \to Y \land X.$$

By Lemma 11, it suffices to obtain the coherency diagrams [4] as permutation-commutative diagrams of permutation maps involving destabilizations. For example, the diagram for coherency of associativity is

$$D^{3}(((W \land X) \land Y) \land Z) \xrightarrow{D^{2}(a')} D^{2}((W \land X) \land (Y \land Z)) \xrightarrow{D(a')} D(W \land (X \land (Y \land Z)))$$

$$\downarrow^{(a' \land Z)_{*}} cofinal \downarrow$$

$$D^{2}((W \land (X \land Y)) \land Z) \xrightarrow{D(a')} D(W \land ((X \land Y) \land Z)) \xrightarrow{(W \land a')^{*}} W \land (X \land (Y \land Z))$$

where D is used generically, and $(a' \wedge Z)_*$ and $(W \wedge a')_*$ are representatives of permutation classes of permutation maps induced by a'.

These diagrams are readily obtained.

5. **Telescopes.** We sketch the main properties of the following telescope construction.

DEFINITION 13. For a prespectrum X, let Tel X be the prespectrum with $(\text{Tel } X)_n = \bigcup_{j=0}^n (X_j \wedge S^{4(n-j)} \wedge [j, n]^*)$, the iterated mapping cylinder of $X_0 \wedge S^{4n} \rightarrow \cdots \rightarrow X_{n-1} \wedge S^4 \rightarrow X_n$, together with the induced inclusions.

Then Tel may be extended to a functor, and there are natural projections p_X : Tel $X \to X$.

PROPOSITION 14. p_x admits a homotopy inverse s_x .

PROOF. To define s_X , show that Tel X and X are strong deformation retracts of the prespectrum Y with $Y_n = X_n \wedge [0, n]^*$ such that p_X is the composite Tel $X \to Y \to X$. \Box

PROPOSITION 15. A weak map $f: X \to Y$, together with a family of homotopies for f, $\{H_n: X_n \land S^4 \land I^* \to Y_{n+1} \text{ from } f_n \land S^4 \text{ to} f_{n+1} | X_n \land S^4\}$, induces strict maps $\phi: \text{Tel } X \to \text{Tel } Y$ and $F: X \to Y$.

PROOF. Let $\phi_0 = f_0$, and for $n \ge 0$, define ϕ_{n+1} by

$$\begin{split} \phi_{n+1}(x, t) &= (\phi_n \wedge S^4)(x, t) & \text{for } t \leq n, \\ &= ((f_n \wedge S^4)(x), 2t - n) & \text{for } n \leq t \leq n + \frac{1}{2}, \\ &= (H_n(x, 2t - 2n - 1), n + 1) & \text{for } n + \frac{1}{2} \leq t \leq n + 1 \end{split}$$

Also, let $F = p_Y \phi s_X$. \Box

PROPOSITION 16. Let $\{H_n\}$ and $\{H'_n\}$ be homotopies for a weak map $f: X \to Y$, and assume that $H_n \simeq H'_n$ rel the endpoints for all n. Then

 $(f, \{H_n\})$ and $(f, \{H'_n\})$ induce homotopic strict maps Tel $X \to$ Tel Y and $X \to Y$.

PROPOSITION 17. Let $f': X \to Y$ and $f'': Y \to Z$ be weak maps with homotopies $\{H'_n\}$ and $\{H''_n\}$, respectively. Then there are composed homotopies $\{H_n\}$ for f''f' such that for the respective induced strict maps $F': X \to Y, F'': Y \to Z$, and $F: X \to Z, F \simeq F''F'$.

6. Proof of Lemma 11. Given a permutation-commutative square in which each map and composite (see \$4) is a permutation map,

$$DW \xrightarrow{f'} D'X$$

$$\downarrow^{g'} \qquad \qquad \downarrow^{f''}$$

$$D''Y \xrightarrow{g''} Z,$$

replace each map by a strict map to obtain a commutative square in Ht(Ps) (by Theorem 1, and §5).

$$DW \xrightarrow{P} DW \xrightarrow{F'} D'X$$

$$\downarrow^{G'} \qquad \qquad \qquad \downarrow^{F''}$$

$$D''Y \xrightarrow{G''} Z$$

Here P is induced by a permutation Π of DW. Since, for all k, SU(2k) is simply connected, we may "pull back" canonical homotopies to obtain a homotopy $P \simeq DW$. This completes the proof, since cofinal inclusions are inverted in Ht(Ad).

7. Further properties. \land commutes with the suspension

?
$$\wedge$$
 S¹: Ht(Ad) \rightarrow Ht(Ad),

 \wedge satisfies a Kunneth formula for stable integral homology (see [6]), and \wedge is weakly universal for pairings (see [9], [6]). We conjecture the existence of an internal mapping functor adjoint to \wedge using a suitable category of permutation maps and methods of Quillen [7].

ADDED IN PROOF. This follow's from Brown's Theorem by Heller [Trans. Amer. Math. Soc. 147 (1970), 573-602].

References

1. J. F. Adams, *Algebraic topology in the last decade*, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc., Providence, R.I., 1971, pp. 1–23.

2. ——, *Stable homotopy and generalized homology*, notes by R. Ming, University of Chicago Math. Lecture Notes, 1971 (mimeographed).

3. J. M. Boardman, Stable homotopy theory, University of Warwick mimeo, 1965 onwards.

4. S. Eilenberg and G. M. Kelly, *Closed categories*, Proc. Conf. on Categorical Algebra (La Jolla 1965), Springer, New York, 1966, pp. 421–562. MR **37** #1432.

5. P. Gabriel and M. Zisman, *Calculus of fractions and homotopy*, Ergebnisse der Math. und ihrer Grenzgebiete, Band 35, Springer-Verlag, New York, 1967. MR 35 #1019.

6. D. M. Kan and G. W. Whitehead, *The reduced join of two spectra*, Topology 3 (1965), suppl. 2, 239–261. MR 31 #2720.

7. Daniel Quillen, *Homotopical algebra*, Lecture Notes in Math., vol. 43, Springer-Verlag, Berlin, 1967. MR 36 #6480.

8. R. Vogt, *Boardman's stable homotopy category*, Aarhus Universitet Lecture Notes, no. 21, 1971 (mimeographed).

9. G. W. Whitehead, *Generalized homology theories*, Trans. Amer. Math. Soc. **102** (1962), 227–283. MR **25** # 573.

DEPARTMENT OF MATHEMATICS, HOFSTRA UNIVERSITY, HEMPSTEAD, NEW YORK 11550