
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 79, Number 4, July 1973 

A GLOBAL THEORY OF STEADY VORTEX RINGS 
IN AN IDEAL FLUID 

BY L. E. FRAENKEL AND M. S. BERGER1 

Communicated by Hans Weinberger, December 18, 1972 

The question of whether the equations governing the motion of an 
inviscid, incompressible fluid admit solutions representing steady vortex 
rings has not been studied widely, despite the central place of such rings 
in the theory of vortex motion initiated by Helmholtz [1] in 1858. Hill 
[2] discovered in 1894 an explicit particular solution for which the 'ring' 
is actually a ball in R3. More recently, there have appeared local 
existence proofs for (a) steady rings of small cross-section [3], [4], [5] and 
(b) steady rings close to Hill's vortex, but homeomorphic to a solid torus 
[6] ; these two cases represent opposite extremes. The present note out­
lines what we believe to be the first global existence theory for steady 
vortex rings. 

By a steady vortex ring we mean a figure of revolution si that is ex­
pected to be homeomorphic to a solid torus in most cases, and is associ­
ated with a continuous, axi-symmetric, solenoidal vector field q (the 
fluid velocity) defined in a cylinder V or in the whole of R3, and having the 
following properties when we take axes fixed in the ring si. (a) Both si 
and q do not vary with time; (b) the vorticity <o = curl g has positive 
magnitude in si, vanishes in V — si or R3 — si, and satisfies a nonlinear 
equation of motion which, among other things, determines the boundary 
of st\ (c) q has a prescribed normal component on dV, or tends to a 
constant value at infinity in R3. For the case of a cylinder F these require­
ments lead to equations (1) and (2) below, and we solve the resulting 
problem by means of the calculus of variations in the large [7], [8]. We 
also use Steiner symmetrization [9], the generalized maximum principle 
[10] and certain a priori estimates to describe the solution and to deal 
with two limiting cases : (i) that when the nonlinear term in the differential 
equation (2a) is discontinuous, and (ii) that when the domain of q is the 
whole of R3 (so that the usual compactness theorems, needed for the 
solution of variational problems, do not hold). 

1. Preliminaries. Let X = [Xl9X2, X3] = [r cos 0, r sin 0, z] be a 
point of R3, so that (r, 0, z) are cylindrical coordinates. Consider the 
axi-symmetric flow of an inviscid fluid, of uniform density p, in a cylinder 
Kthat is here represented in a meridional plane (0 = const) by the domain D ; 
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V={X\Xl + X2
2<a2AX3\<b} and D ±= {(r,z)|0 < r < a , |z| < 6}. 

We seek a stream function 

(1) ¥(r, z) = i^(r, z) - i ^ r 2 - fc (W = const > 0, k = const ^ 0), 

such that the velocity vector field q has components ( — T2/r, 0, Tr/r) in 
the directions (r, 0, z) increasing; \j/ is to be the stream function of the 
velocity field induced by a steady vortex ring ; — \Wr2 represents a uniform 
stream; and k is a flux constant which is zero for Hill's vortex and very 
large for rings of small cross-section. 

The problem of finding a steady vortex ring in V may be formulated as 
follows. Given W, /c, a vorticity function ƒ as in (3) below, and the kinetic 
energy nprj of the desired vortex motion, we seek a vortex stream function 
\j/ satisfying 

(2a, b) r(xl/r/r)r + xjizz = - Xr2f{V) in D, <AU = 0, 

where *F and \jj are related by (1), and the vortex-strength parameter X is 
to be such that 

(2c) ƒƒ i ( < # + xjj2
z)r drdz = n>0. 

The function ƒ : R -> [0, oo) is assumed to be nondecreasing and (in 
the first instance) locally Holder continuous ; more precisely, 

(3a, b) ƒ (0 = 0 for t g 0, f(t) > 0 for t > 0, 

and 

(3c) 0 g /(O - /(s) S iAf*{l + (Mf)w" x}(r - s)" for r ^ s ^ 0, 

where M > 0, m ^ 1 and \x e (0,1) are given constants. 
One can avoid the singularity of the differential equation (2a) at r = 0 

by considering in place of \j/ the vector potential oc(X) = [ — ij/smO/r, 
xj/cosö/r,0] = [a 1 , a 2 , 0 ] , where square brackets denote vector com­
ponents in the directions Xj increasing. Then i// = X1a2 — X2al9 and in 
place of (2a) one has the system 

(4) A [ a i , a 2 , 0 ] = -l[-X29Xl90]f(V) in V U = £ P \ 

Let H(D) denote the Hilbert space that results from completion of the 
set CQ(D) in the norm implied by the inner product 

(5) <w, v} = J ~2(urvr + uzvz\ 
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the element dz = r dr dz of measure being implied wherever no other element 
is written. The space H(D) is a slight variant of the Sobolev space 
^1(2(D), and is a natural setting for the problem (2); it is embedded 
compactly in the space LP(D, T) normed by {JJDMP}1 / P> P = 1-

2. The solution for continuous vorticity and a bounded domain. We 
define: x = (r, z) and S(rj) = {ue H(D)\ \\u\\2 = rj}. A generalized solution 
of problem (2) is an element \j/ e S(rj) and a number X such that 

(6) <p, </,> = X ƒƒ ç>/OF) for all cp e H(D). 

This condition characterizes a critical point \j/ of the restriction to the 
sphere S(rj) of the functional 

(7) j(u) = f f F(u(x) - \Wr2 - k), where F(t) = f /(s) ds. 
JJD JO 

Note that the integral over D need be taken only over the set 

Au = {X|II(X) > \Wr2 + fc}, 

which becomes the cross-section A^ of the vortex ring when u = ij/, and 
similarly in (6). A variational argument [7], [8] and Steiner sym-
metrization [9] about the line z = 0| of any function possibly maximizing 
J on S(rç), then lead to 

THEOREM 1. The variational problem max J(u) over S(rj) has a solution 
\jj that satisfies (6) for a certain X e (c, C), where the positive bounds c and C 
depend only on the data of the problem. Moreover, xjj e C2 + fX(D) (where fi 
is the Holder exponent off), with i// = 0(r2) and \j/r = 0(r) for r -> 0, and \// 
satisfies (2) pointwise. Finally, ij/ is an even function of z, is strictly positive 
in D, and has \j/z < 0 in D+ — {x e D\z > 0}. 

Here the strict inequality \\iz < 0 in D+ is obtained by proving that 
da2/dz is weakly subharmonic in V' = {X e V\X1 > 0, X3 > 0} and by 
appeal to generalized maximum principle [10]. Moreover, if the function ƒ 
is C' and convex, the set A^ is simply connected. 

3. The case of discontinuous vorticity. Let ƒ (t) have a simple discon­
tinuity at t = 0, corresponding to a jump in vorticity at the boundary 
dA^ of the cross-section of the vortex ring. The only change in (3) is that 
we weaken the qualification in (3c) to t ^ s > 0; then the limit ƒ(() + ) 
exists, and we suppose that the inequality ƒ (t) ^ 1 + (Mt)m, t > 0, still 
holds. 

THEOREM 2. If f(f) has a simple discontinuity at t = 0, there still exists 
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a pair (i//, X) as follows. The function \j/ eC1 + v(D) for any ve(0,1), and 
maximizes J on S(rj) ; the constant X is bounded as in Theorem 1 ; and, apart 
from failing to satisfy (2a) on the set ^ _ 1 (0 ) , which has plane measure 
zero, I/J is a pointwise solution of the problem (2). 

One proves this theorem by taking a sequence {ƒ„} of smooth ap­
proximations t o / , such that ƒ„ -> ƒ as n -• oo. The corresponding solutions 
{(i^„,/lM)} form a relatively compact set in C1 + V(D) x R, and, resorting 
to a subsequence if necessary, we call the limit point (xj/, X). It is clear that 
mz = \\fz g 0 in 25+, and the generalized maximum principle [10] implies 
once more that x¥z < 0 in D+. This is the crucial result, for it shows that 
the set XF~ 1(0) has measure zero, and allows us to prove that 

(8) <A(*o) = ^JJ * o , x ) / W x ) ) 

(where G is the Green function of the linear analogue of (2a, b)), by passing 
to the limit in the corresponding expression for \j/n. 

4. The unbounded flow field. We continue to allow the possibility of a 
simple discontinuity of ƒ (t) at t = 0. Let IT be the half-plane {r > 0 
all z}, and let H(H) and LP(II, T) be defined by the statements in §1, with 
n replacing D. Sets bounded in H(Tl) need not be bounded, let alone 
compact, in Lp(II, T). However, in all cases of our problem the values of 
t/f on the set A^ (where ¥(*) > 0) determine ij/ everywhere by means of 
(8). Therefore it suffices to prove existence of a bounded domain Q? 

independent of the lengths a and b defining D, such that A^ remains in 
Q no matter how large a and b become. For then one can consider a 
sequence {Dn} of domains tending to n , extract from the corresponding 
sequence {0A„,/O} a subsequence convergent in C1 + V(Q) x R, and 
finally use the analogue of (8) for the half-plane to extend the limit function 
\\t from Q to II. In this way we obtain 

THEOREM 3. Replace D by H in (2) and (7), and demand that \\i -> 0 as 
r2 4- z2 -> oo. The problem (2), so modified, still has a solution {\j/,X) with 
the properties established in Theorem 1 if ƒ is continuous, or in Theorem 2 
otherwise. The cross-section A^ of the vortex ring lies in a bounded domain 

Q = J (r, z)\0 <r <r*,\z\< z*, \z\ < 
W(Wr2 + 4k)y 

where r# and z^ can be estimated in terms off, W, k and rj, and z# is in-
dependent of k. 
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