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Let G be an LCA group with dual T, M(G) the usual convolution 
algebra of finite Borel measures on G and A the Fourier-Stieltjes trans­
formation. By M0{G) we mean the ideal of measures JU e M{G) such that fi 
vanishes at oo. The purpose of this note is to announce the following results. 

THEOREM. Let G be a nondiscrete LCA group with Haar measure mG. 
Let À be a nonzero measure in MQ (G) and D a a-compact subset of G with 
mG(D) = 0. Then there exists a nonzero measure o in MQ (supp X) such that 

(i) supp G is compact and has ^-measure zero, 
(ii) mG[D + Gp(supp a)] = 0. 

Here Gp(supp<r) denotes the subgroup of G which is algebraically 
generated by supp a. 

COROLLARY 1 (VAROPOULOS [2]). Every nondiscrete G contains a com­
pact perfect set E such that MQ(E) # {0} and mG[Gp(E)] = 0. 

Let MS(G) denote the set of measures singular with respect to Haar 
measure on G. 

COROLLARY 2. Let B be a separable subset of Ms(G)\{0} such that 
p\F # 0 for all fieB and some a-compact subset F of T. Then there exists 
a measure a e M*(G) such that 

00 

(J ( B * < T " ) < = M S ( G ) \ { 0 } . 
« = 1 

COROLLARY 3. Suppose fieM(G) has the property that, VcreMo(G), 
3n = na e N (the natural numbers) such that ju * an e L1(G). Then \i e Ll(G). 
In particular, we have \x * M0(G) a L1(G) => \i e L1(G). 

As an application of Corollary 3 we give the solution to a question 
implicit in Meyer [1, p. 94]. Let £ be a subset of T and define 

Mz(G) = {)UeM(G):supp/} c £}. 

We say that Ê is a Riesz set of type 0 if 

(a) M 0 ( G ) A I Ê = L 1 ( G ) A | Ê . 

Note that every Sidon set (or Helson set) has property (a). 
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COROLLARY 4. Let n = (nu n 2 , . . . , np) eNp,pe N, and R c r satisfy 

/ij e MR(G) n M0(G) forj = 1,2,.. . , p imply 
( b ) A1 *fin22*'-*tin

p
peL\G). 

Then F = fc u Ê has the following property (c) for every Riesz set E of 
type 0 : 

lij e Mp(G) forj = 1,2,... , p imp/); 

(C) MÏ1 * j # • • • • * / # € L \ G ) . 

In particular we have for any compact abelian G the result : The union 
of a Riesz (or small) set and a Sidon set is a Riesz set. 

Detailed proofs of the above will appear elsewhere. 
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