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Introduction. In this work we are concerned with integrals of the form 

(0.1) f f(xMx\<pJLx))dXm(x) 

where Q <= Rm is a bounded domain, JS?W denotes m-dimensional Lebesgue 
measure, (p = (<p\..., (pn)tr is a continuous transformation from Q to 
Rn (m ^ n) belonging to some Sobolev space Wx

p'
loc(Q), and (px is the 

(almost everywhere defined) matrix function (d^/oxj). Here ƒ is a real-
valued function o n Q x i ? n x M „ x m , where Mnxm is the space o f n x m 
matrices. Such integrals arise in the analysis of various variational prob
lems. The success of the analysis, by direct methods, of nonparametric 
variational problems, where it is appropriate to make direct convexity 
hypotheses on/(x, z, • ), is well known. In contrast, the study of parametric 
variational problems by these methods has been less successful. In this 
latter class of problems, which includes Plateau's problem, the fact that 
the integral has special behavior under transformation of independent 
variables implies that the integrand cannot possess the strong type of 
convexity properties referred to above. Only for the case m = 2 has there 
been available a lower semicontinuity result for such problems, in what 
would seem to be their natural context, namely with <p continuous and 
belonging to W^(Q)n and with sequences {tpk} converging uniformly to 
q>. An important example due to Besicovitch [1] has indicated that the 
situation here is a very delicate one. For m > 2, a result of this type was 
obtained by Morrey [7, Theorem 9.2.1] under the additional assumption 
that <p is locally Lipschitz in Q. 

The present note provides, under natural hypotheses for parametric 
integrands [7, p. 356], a lower semicontinuity result for the general case 
of (p e W„(Q)n n C(Q)W, m ^ 2. The result is obtained by techniques due 
to McShane [5] and Morrey [7], combined with a measure-geometric 
estimate for mappings q> e W^Qf n C(Q)", p> m. This estimate, together 
with a few additional results concerning mappings <p of this type, is 
presented in the first part of this note. 
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Among these results we mention an elementary change of variables 
formula for integrals involving mappings <p eWp(Q)n*n C(Q)n, p > m, and 
a related generalization of Sard's lemma. The change of variables formula 
is based on a theorem of Fédérer [3] and extends a result of Rado and 
Reichelderfer [8]. 

Complete proofs and related results will appear elsewhere. 

1. Transformations in Wl(Q)n, p > m. We adopt the convention that 
whenever <p belongs to W\ (Q)w, p > m, it is taken to be the continuous 
representative of its equivalence class. The existence of such a rep
resentative is ensured by the embedding theorem. 

Our first result is an estimate for the ^-measure of ^-images of 
measurable subsets of Q, where 3fPm denotes the m-dimensional Haus-
dorff measure in Rn. 

THEOREM 1. Suppose q>:Q-*Rn belongs to W^Qf, p > m. Then 
S = <p(Q) is of finite ^„-measure and for every $£'„-measurable subset 
A <= Q one has 

r /• "I m/p 

(1.1) Jfm(<p(A)) S €(m,p)<Zm{AY-mlpM \<PÀ*)\Pd<?m(x) . 

REMARK. The requirement p > m is essential since Besicovitch ([1], 
see also [7, p. 352]) has provided an example, with m = 2, of a continuous 
(p in W\{Çï) which satisfies J^3((p(Q)) > 0 ! 

COROLLARY 1. If N <= Q is ££m-null, then <p(N) is 3tfm-null. 

COROLLARY 2. If A <= Q is <£ „-measurable, then <p(A) is ^„-measurable. 

The proof of Theorem 1 can be reduced to the case where A is open. 
We partition A into (half open) cubes {Qj}jzi> By using a variant of 
Poincaré's lemma for Wp(£î) (e.g., [7, p. 83]) we obtain for each of these 
cubes the estimate 

(1.2) f \q>\x) - <f>7 dSejx) S CQ f |(pi(x)r diem(x), i = 1,.. . , n, 
JQ JQ 

where 7pl = (p\Q) *s the mean value of cpl over Q. Combining this with the 
Sobolev embedding theorem we obtain 

(1.3) max|<p< - W\ S Cy| VIILPŒ), i = 1,. . . , n, 

where it is easily seen that CQ has the form 

(1.4) CQ = C(m,p)>r1-m">9 

r being the edge length of Q. Using the estimates (1.3), (1.4), for each 
i = 1,.. . , n, we deduce that q>(Qj) is contained in the Rw-cube centered 
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at <p(Qj) = {(pl{Q?\..., <Pn(Qj)) and having edges of length 
/i = 2C(m,p)(rJ.)

1-^||^||LP(QJ)M, 

where r} is the edge length of Qj. Thus <p(QJ) is contained in a ball Bj of 
diameter 
(1.5) dj = 2mV2CXm,p)(rj)'-^<pJLPmn, j ^ 1. 

From (1.5) it follows, since the absolute continuity of ƒ \<px\
p ensures that 

for the {Qj} taken sufficiently small the {Bj} will be of arbitrarily small 
diameter, that the outer J?m-measure of the set (p(A) = (J j<p{Qj) satisfies 

(1.6) SC(m,p) ]1 - m/p r /• 

= C(m,P)^m{AY-mlp\ \<px(x)\" d&m(x) 

) 

m/p 

m/p 

For our next result we introduce the following notation (see [3]). We 
set, for (p as above, A <= Q and y eR„, N(<p|,4, y) = cardinality{ç>~ 1(y) n ,4}. 

In addition, for any P e M„xm we denote (7m(P) = (£A (XA)2)1/2, where 
{Xx} are the m x m minors of the matrix P. Note that by a result of 
Morrey [6] (see also Gagliardo [4]) <px, and hence Jmq> = <rm(<px), is 
defined i?m-a.e. in Q, where the partial derivatives are taken in the 
classical sense. 

THEOREM 2 (CHANGE OF VARIABLES). Let <p be as in Theorem 1 and let 
g : <p(CÏ) -> R be an ^„-measurable function. If A is an J#„-measurable 
subset of Q, the formula 

(1.7) f g(y)N(<p\A, y) d3em(y) = f g(<p(x))Jm<p(x) d^m(x) 
J<P(A) J A 

is valid, whenever one of the two sides is meaningful. 

REMARK. For the case n = m = 2, this result was proved by Rado and 
Reichelderfer [8, p. 438]. Actually, it is easily seen that their proof also 
gives the result for the case n = m ^ 2. 

When n ^ m, formula (1.7) was obtained by Fédérer [3, pp. 241 and 
244] under the following assumptions : 

(a) q> is continuous and the (classical) partial derivatives d<p/dxi 
(i = 1,.. . , m) exist J£?m-a.e. in Q; 

(b) <p satisfies the inequality 

(1.8) lim sup |^(x') - (p(x)\ • |x' - x | - 1 < oo, 
x'-*x 

at every point x in A. 
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PROOF. By a result of Calderón [2], the transformation <p satisfies (1.8) 
at ifm-almost every point x in Si. Denote by N the null subset of Q where 
(1.8) does not hold. 

Let A be an j£?m-measurable subset of Q and set Ax = A — N and 
A2 = A n N. 

By the result of Fédérer mentioned above, (1.7) is valid if A is replaced 
by Ax. But, by Corollary 1, <p(A2) is an ^ -nu l l set in Rn. Hence formula 
(1.7) holds. 

COROLLARY 3 (GENERALIZED SARD'S LEMMA). Let <p be as in the theorem. 
Then for every $£^measurable subset A <= Si one has 

(1.9) *JfP(A)) ^ ƒ Jm<P(x) dXJpc). 

In particular, if A0 = {x|rank(q>x) < m) then J^m(<p(A0)) = 0. 

COROLLARY 4. If A <= Q is such that J^m((p(A)) = 0, then 

(1.10) rank(^(x)) < m for a.e. xeA. 

REMARK. Notice that the right side of equation (1.9) is finite even for 
p = m, but the example of Besicovitch mentioned above shows that the 
inequality can fail in this case. 

2. Semicontinuity results for W^Qf. We now apply the preceding 
results to parametric variational problems, following the basic scheme in 
[7, Chapter 9]. Hereafter we deal with integrands (0.1) which satisfy the 
following conditions [7, p. 356]: 

(2.1) (a) ƒ is independent of x e Q and m ^n; 
(b) f:Rn x MnXm -> R is continuous everywhere and of class C1 on the 
open set U = {(z, P):rank(P) = m}. 

(2.2) ƒ (z, PA) = (det A)f(z, P) for every m x m matrix A such that 
det A > 0. 

(2.3) ƒ(z, P) = F(z, (XA)), where F(z, • ) is a convex function in the 
m x m minors {Xx} of P: 

f(z°,P) = F(z°,(X,)) ^ F(z°,(X2)) + M ( * A " X& 

Moreover, if (z°, P°) e U, the coordinates {a°} of the support plane to 
F(z°, - ) at (X°) satisfy certain additional requirements by which they are 
uniquely determined (see [7, p. 354]). If (z°, P°) $ U (in which case X°k = 0 
for all X, and/(z°, P°) = 0 by (2.2)), the coordinates {a°} are not uniquely 
determined. 

(2.4) ƒ (z, P) ^ c(Tw(P), for some c> 0. 
REMARKS. Conditions (2.1) (a), (2.2) are related to the invariant nature 

of the integral under diffeomorphisms of Q, while (2.3) implies the strong 
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quasi-convexity of ƒ with respect to P [7, Theorem 4.4.8]. Actually, if 
n = m + 1, the convexity of F with respect to (XA) is equivalent to the 
strong quasi-convexity of /wi th respect to P [7, Theorem 4.4.10]. 

The particular case ƒ (z, P) = crm(P), which occurs in the Plateau prob
lem, is easily seen to satisfy (2.1)-(2.4) 

We now give our basic semicontinuity result. 

THEOREM 3 (LOWER SEMICONTINUITY). Let f satisfy (2.1)-(2.4). Suppose 
that {<pk} and <p belong to W^'loc(Q)" n C(Q)n and <pk^> (p locally uniformly 
on Q. Then 

(2.5) f ƒ (çKx), <px(x)) d&Jpc) £ lim inf f ƒ (<pk(x), 9kJx)) dXJx). 

Observe that one can restrict attention to cases in which the right side 
of (2.5) is finite. It is then sufficient to verify (2.5) for subdomains Q' for 
which H'<= Q. The proof utilizes the following lemmas. We follow [7] in 
denoting the Jacobian det(^ J by d^ldx. 

LEMMA 1. If $ e W^'l0C(Q)w n C(ft)m then there exist Se^null sets Zi9 

i = 1 , . . . , m, such thai if R is any closed cell in Q none of whose faces lie 
on one of the planes xl = é where é eZh then 

(2.6) ƒ ^(x)d^m(x) = ƒ o[y,1tdR)]d£rjy), 

where o[y, &(dR)] denotes the order at y of the map $ on dR. 

LEMMA 2. Let \jf be as in Lemma 1, and suppose R is a cell for which 
(2.6) holds. Let {}jfk} satisfy the same conditions as r̂ and suppose tyk-*ty 
uniformly on R. Then there are measurable subsets Vk <= R such that 

(2.7) ƒ d-^(x)d<?m(x) - ƒ g(x)dXJLx). 

In the proof of Lemma 1 we utilize Theorem 1 together with a character
ization of Sobolev spaces due to Morrey [6] and Gagliardo [4] to show 
that almost all hyperplanes xl = const, i = 1 , . . . , m, are mapped by ^ 
into ^fm-null sets. Lemma 2 is an extension along the lines of [7] of a 
result due to McShane [5]. 

Our final result involves an extension of the functional If, given on 
W^flf n C(Q)M by 

/ > , Q ) = f f(<p(x\(px(x))d<?m(xl 
Ja 

to all of C(Q)n along the lines of the definition of Lebesgue-Fréchet area 
(see Serrin [9], and [7, p. 353]). 
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DEFINITION. For ƒ satisfying (2.1)-(2.4) and <p e C(Q)W define 

(2.8) Jfa Q) = inf lim inf f ƒ {<pk{x\ <pM(x)) d&jA , 

the infimum being taken over all sequences {(pk}k^i of C^îîf-trans-
formations which converge locally uniformly to <p. 

The following theorem, which resolves a question raised by Morrey 
[7, p. 400], is a consequence of the lower semicontinuity result. 

THEOREM 4. Let f satisfy (2.1)-(2.4). If <pe W^Q)" n C(Qf then 

(2.9) Jfa Q) = f ƒ W 4 ^(x)) <tô>m(x). 

REMARK. The results of this section actually hold under the following 
more general assumptions on <p: 

ipeW^iO) x Wl2(Cl) x . . . x Wl(Q) n C(Q)M, 
where 

(a) Pi > m - 1, i = l , . . . ,n, 
(b) l/p4l + • • • + 1/Pim ^ 1 whenever 1 ^ ix < • • • < im < n. 
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