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1. Introduction and results. Let M be a manifold ; define F(M, k) to be 
the subspace {<x l 5 . . . , xk>|xf e M, xt ^ Xj if i # j} of Mk. There is a 
proper right action of Sk, the symmetric group on fc-letters, on F(M, fc) 
given by 

G - <X1 ? . . . , Xk> = ( X ^ ! ) , . . . , X ^ ) ) , Ö-G2k. 

Let B(M, fe) denote the orbit space F(M, fc)/Zk. The object of this paper 
is to outline the calculation of 

H*(HomZp(CtF(Rr, p) ; Zp{q))\ n^2,p prime, 

where C+F(Rn
9 p) denotes the singular chains of F(Rn, p), and Zp{q) de­

notes the Ip-module Zp with 2P-action a • x = ( - l)qsi(r)x for xeZp and 
a e Zp ( ( - 1)S(<T) is the sign of a). Since the Enaction on F(Rn, p) is proper, 
we may identify H*(HomEp(C^F(«w, p) ; Zp(2g))) with H*(B(Rn,p); Zp) 
[5]. By abuse of notation we denote H*(Hom2 ( Q F ^ p ) ; Zp(g))) by 
H*(B(R\p);Zp(q)). 

The interest in H*(B(Rn, p) ; Zp(g)) arises from the work of Peter May 
[6], [7] which implies that each class in H^(B(Rn

9p); Zp(q)) determines a 
homology operation on all classes of degree q in the mod p homology of 
any rc-fold loop space. 

For our calculations, we rely heavily on the map of fibrations 

*P % 

F(Rn
9p)-^F(R™,p) 

B(R\p)^B(R™,p) 

where F(fl°°, p) = lim F(Rn, p) and £(J?°°, p) = F(K°°, p)/Sp. Here ƒ and 
ƒ are the evident inclusions. Since F(jR°°,p) is contractible with free 
Sp -action, £(fl°°, p) is a K(Ep , 1). Obviously 
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ƒ*:/ƒ* (Lp; Zp(q)) - #*(£(*", p);ZJLq)) 

is defined ; the structure of H*(Zp ; Zp(q)) is well known [6]. 
To facilitate the statement of our result, we recall that the product 

An Bin the category of connected Zp-algebras is defined by (A n B)0 = Zp 

and {A n B)q = Aq x Bq for q > 0, with product specified by Aq • Br = 0 
for q > 0 and r > 0 and the requirement that the projections be mor-
phisms of algebras. 

THEOREM I. For p an odd prime and n ^ 2, 

H*(B(R\p);Zp(2q)) = Annlmf* 

as a connected Zp-algebra. Here I m F * « H*(£p; Zp(2g))/Ker ƒ* vv/iere 
K e r / * is the ideal consisting of all elements of degree greater than 
(n — l)(p — 1) and 

An = E[a] if n is even, 

= Zp if n is odd, 

where a is an element of degree n — 1 and E[a] denotes the exterior algebra 
on a. Furthermore, a restricts to the dual of a spherical class in the homology 
of F(Rn, p), and the Steenrod operations on a are trivial. 

THEOREM II. For p an odd prime and n ^ 2, 

H*(B(Rn,p); Zp(2q + 1)) = Mn 0 Im ƒ* 

as a Zp-module. Here Im ƒ* « H*(Lp ; Zp(2<? + 1))/Ker ƒ* where K e r / * 
is the sub Zp-module consisting of all elements of degree greater than 
(n — l)(p — 1) and 

Mn = 0 if n is even, 

= Zp' X if n is odd, 

where X is an element of degree (n — l)((p — l)/2) and Zp • X denotes the 
Zp-vector space with basis X. Furthermore, X restricts to the modp re­
duction of an integral class in H*F(Rn, p). 

For the case p = 2, we have 

PROPOSITION III. B{Rn, 2) has the homotopy type of RPn~ *. 

Finally, we remark that the spaces B(M, j) were studied by Fadell and 
Neuwirth [3]. By specializing M to R2, Fox and Neuwirth [4] showed 
that B(R2, j) is a K(Bj, 1) where Bi is the braid group defined by Artin [1]. 
We briefly recall Fox and Neuwirth's method. They define an equivariant 
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cell decomposition for F(R2,j) and consider the induced cell decom­
position for B(R2J). Here each oriented (2/ - l)-cell represents a 
generator for n^BiR2,]). "Small" loops about each (2j — 2)-cell deter­
mine a complete set of relations for the generators. A calculation reveals 
that nxB{R2,j) = B}. Since niB(R2J) = 0 for i > 1, B(R2J) is a K(Bj9 1). 

Details of the calculations of H*[B(Rn, p); Zp(q)] will appear elsewhere, 
along with a complete theory of homology operations on n-fold loop 
spaces. 

2. Outline of calculations. Since the action of Zfc on F(Rn, k) is free, 
we can apply the spectral sequence for a covering [2] to the covering 
projection F(Rn, k) -> B(Rn, k). To calculate E2 of this spectral sequence, 
we must explicitly determine the structure of H*F(Rn, k) as a Ek-module 
(its additive structure is determined by use of the Serre spectral sequence 
and the work of Fadell and Neuwirth [3]). To this end, we first construct 
certain representative cycles a^-,1 ^j^i^k— 1, and then calculate geo­
metrically the E*-action on the resulting classes {a,;}* e if^(F(/T, k); Zp). 
Since H * = (H J* here, we dualize and read off the action of Zk on the 
indecomposable elements a*. A calculation of the algebra structure of 
H*F(Rn, k) in terms of the a* finishes the determination H*F(Rn, k) as a 
Zk -module. 

Next, instead of attempting to evaluate £f* directly, where {Er} is the 
spectral sequence which converges from 

EJ* = H*(LP; H*(F(R\p); Zp(q))) to H*(B(Rn, p);Zp(q))9 

we study £'2** where {E'r} is the spectral sequence obtained by replacing 
l^p with 7cp, the cyclic group of order p. By careful algebraic analysis of 
E'2 and application of the restriction map iÇLp:np):np -• Sp, we prove 
the following theorem : 

THEOREM IV [VANISHING THEOREM]. In the spectral sequences {Er} and 
{£;}, £si' = E'l' = 0,fors>OandO<t<(n- l)(p - 1). 

From the fact that B(Rn, p) is a pn-dimensional manifold, the vanishing 
theorem, and Swan's results [8] applied to the p-period of Zp, we deduce 
most of the nontrivial differentials and almost all of E% *. To complete 
the additive determination of Ef*, we calculate E\>*, the points in 
H*(F(Rn, p) ; Zp(q)) fixed under the action of Zp. All remaining differentials 
and the determination of E^ follow directly. 

We finish by indicating how the algebra structure and Steenrod oper­
ations are calculated in H*(B(Rn, p) ; Zp(2q)). Let T denote an auto­
morphism of Rn given by reflection through a fixed coordinate. The 
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map f :F(JT, p) -* F(R", p) given by f <x1?..., xp> = (Jxu..., Txp> 
induces the obvious 7i2-actions on F(Rn

9 p) and B(Rn, p) ; we note that the 
covering projection, n : F(R", p) -» B( JF1, p) is 7r2-equivariant. The class a 
of Theorem I is uniquely specified by the conditions Ta = — a and 
7r*a # 0. From the fact that t fixes all classes in Im ƒ*, the remaining 
properties of a follow trivially. 
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