INDUCTION AND STRUCTURE THEOREMS FOR GROTHENDIECK AND WITT RINGS OF ORTHOGONAL REPRESENTATIONS OF FINITE GROUPS

BY ANDREAS DRESS

Communicated by Hyman Bass, November 17, 1972

ABSTRACT. The Grothendieck- and Witt- ring of orthogonal representations of a finite group is defined and studied. The main application (only indicated) is the reduction of the computation of Wall's various L-groups for a finite group π to those subgroups of π , which are a semi-direct product of a cyclic group γ of odd order with a 2-group β , such that any element in β acts on γ either by the identity or by taking any element in to its inverse.

Let π be a finite group and R a Dedekind ring. An $R\pi$ -lattice (M, f) or just M is defined to be a finitely generated, R-projective $R\pi$ -module M together with a symmetric, π -invariant nonsingular form $f: M \times M \to R$ (cf. [3]). For two $R\pi$ -lattices M_1 and M_2 one has their orthogonal sum $M_1 \perp M_2$ and tensor product $M_1 \otimes M_2$, thus the isomorphism classes of $R\pi$ -lattices form a half-ring $Y^+(R,\pi)$, whose associated Grothendieck ring is denoted by $Y(R,\pi)$. For a subgroup $\gamma \leq \pi$ one has in an obvious way, restriction and induction of $R\pi$ -lattices, resp. $R\gamma$ -lattices, and it is easily seen (cf. [3]) that this makes Y(R,-) into a G-functor in the sense of Green (cf. [5]).

As in the theory of integral group-representations, where the Grothendieck ring of isomorphism classes of $R\pi$ -modules is much too large for many purposes and is thus replaced by its quotient $G_0(R,\pi)$ (in the sense of [9]) modulo the ideal, generated by the Euler characteristics of short exact sequences of $R\pi$ -modules, we are going to define certain quotients of $Y(R,\pi)$, using a relation which was first introduced by D. Quillen in [7, §5]. At first let us remark, that for any finitely generated Rprojective $R\pi$ -module N, one has the associated hyperbolic module $H(N) = (N \oplus N^*, f)$ with $N^* = \operatorname{Hom}_R(N, R)$ the R-dual of N, considered as $R\pi$ -module (with $(g \cdot v)(n) = v(g^{-1} \cdot n)$, $g \in \pi$, $v \in N^*$, $n \in N$) and $f(N, N) = f(N^*, N^*) = 0$, f(n, v) = v(n), $n \in N$, $v \in N^*$. We now define a Quillen pair (M, N) to be an $R\pi$ -lattice M = (M, f) together with an

AMS (MOS) subject classifications (1970). Primary 15A63, 16A54, 18F25; Secondary 20C99, 20J99, 57D65.

Key words and phrases. Orthogonal representations of finite groups, L-groups, Witt ring, induced representations, Frobenius-functor, quadratic forms.

 $R\pi$ -submodule $N \subseteq M$, such that N is an R-direct summand (i.e., M/N and thus also N is R-projective) and f(N, N) = 0. For example, (H(N), N) and $(H(N), N^*)$ are Quillen pairs. If (M, N) is a Quillen pair, then $N \subseteq N^{\perp} = \{m \in M | f(m, N) = 0\}$ and N^{\perp}/N is an $R\pi$ -lattice again.

Let I_1 , resp. I_2 , $\subseteq Y(R,\pi)$ be the ideal, generated by all elements of the form $[M] - [N^1/N] - [H(N)]$, resp. $[M] - [N^1/N]$, where (M,N) is a Quillen pair, and define $GU_0(R,\pi) = Y(R,\pi)/I_1$, $GW_0(R,\pi) = Y(R,\pi)/I_2$. Because H(N) = 0 in $GW_0(R,\pi)$ one has $I_1 \subseteq I_2$ and thus a natural surjection $GU_0(R,\pi) \twoheadrightarrow GW_0(R,\pi)$. Moreover one checks easily, that the hyperbolic construction defines a well-defined map

$$H: G_0(R, \pi) \to GU_0(R, \pi),$$

whose image is precisely the kernel of $GU_0(R, \pi) \to GW_0(R, \pi)$, i.e., we have a natural exact sequence $G_0(R, \pi) \to GU_0(R, \pi) \to GW_0(R, \pi) \to 0$.

Finally the G-functor structure on Y(R, -) carries through to a G-functor structure on $GU_0(R, -)$ and on $GW_0(R, -)$ and the above sequence behaves well with respect to restriction and induction.

Now for a set $\mathfrak H$ of subgroups of π define $I(\mathfrak H,GW_0)$, resp. $I(\mathfrak H,GU_0)$, to be the sum of the images of $GW_0(R,\gamma)$, resp. $GU_0(R,\gamma)$, $(\gamma\in\mathfrak H)$ in $GW_0(R,\pi)$, resp. $GU_0(R,\pi)$, with respect to the induction maps from γ to π . For a set Σ of prime numbers let $\mathfrak H_{\Sigma}(\pi)$ be the set of subgroups of π , which are p-hyperelementary (i.e. have a cyclic normal subgroup of p-power index) for some $p\in\Sigma$, especially $\mathfrak H_{\phi}(\pi)=\{\gamma\leq\pi|\gamma\text{ cyclic}\}$. For the order $|\pi|=\prod p^{\alpha p}$ of π define $|\pi|_{\Sigma}=\prod_{p\in\Sigma}p^{\alpha p}, |\pi|_{\Sigma'}=\prod_{p\notin\Sigma}p^{\alpha p}$ (thus $|\pi|=|\pi|_{\Sigma}\cdot|\pi|_{\Sigma'}$). Then we have

THEOREM 1. $n \cdot 1_{GW_0(R,\pi)} \in I(\mathfrak{H}_{\Sigma}(\pi), GW_0)$ with $n = |\pi|_{\Sigma'}$ for $|\pi|_{\Sigma'}$ odd and $n = 4 \cdot |\pi|_{\Sigma'}$ in any case.

Theorem 2.
$$n \cdot 1_{GU_0(R,\pi)} \in I(\mathfrak{H}_{\Sigma}(\pi), GU_0)$$
 with
$$n = |\pi|_{\Sigma'}^2 \qquad \text{for } R \text{ semilocal, } |\pi|_{\Sigma'} \text{ odd,}$$
$$= 4 \cdot |\pi|_{\Sigma'}^2 \quad \text{for } R \text{ semilocal,}$$
$$= |\pi|_{\Sigma'}^3 \qquad \text{for } |\pi|_{\Sigma'} \text{ odd,}$$
$$= 4 \cdot |\pi|_{\Sigma'}^3 \quad \text{in any case.}$$

Since $GU_0(R,\pi)$ acts naturally as a Frobenius-functor on most (if not all) of the various L-groups, associated with a finite group π (cf. [11]), one thus can reduce the study of these L-groups to the case of p-hyperelementary groups. Actually for any such L-functor—let it be called just L—one has

COROLLARY 1. The various restriction maps define an isomorphism of

 $L_{\Sigma}(\pi) = \inf_{\mathrm{Df}} Z[1/p|p \notin \Sigma] \otimes L(\pi)$ onto the subgroup of $\prod_{\gamma \in \mathfrak{H}_{\Sigma}(\pi)} L_{\Sigma}(\gamma)$, consisting of those tuples $(x_{\gamma})_{\gamma \in \mathfrak{H}_{\Sigma}(\pi)}$ with $x_{\gamma} \in L_{\Sigma}(\gamma)$, $x_{\gamma|\delta} = x_{\delta}$ for any $\delta \leq \gamma$ and $x_{\gamma}^{g} = x_{g\gamma g^{-1}}$ for any $g \in \pi$ $(x_{\gamma|\delta}$ the restriction from γ to δ , $x \to x^{g}$ the natural isomorphism from $L_{\Sigma}(\gamma)$ onto $L_{\Sigma}(g\gamma g^{-1})$, associated with g).

PROOF. This follows the same way from Theorem 2 as R. Brauer's characterization of generalized characters among class functions by their restriction to elementary subgroups from his induction theorem. Thus it can also be considered as a special case of [1, §8, Appendix].

Using the above exact sequence and Swan's induction theorems for $G_0(R, \pi)$ (cf. [10]), Theorem 2 follows by a well-known trick, due to Swan (cf. the proof of Proposition 1 in [10, pp. 558-559]), from Theorem 1. Theorem 1 itself follows to some extent from the following result on the structure of $GW_0(R, \pi)$:

THEOREM 3. For any ring A write A' for $Z[\frac{1}{2}] \otimes A$. Then

- (i) $GW_0(\pi)' = D_f GW_0(\mathbf{Z}, \pi)' \cong G_0(\mathbf{R}, \pi)'$.
- (ii) $GW_0(R, \pi)' \cong GW_0(\pi)' \otimes_{\mathbf{Z}} W(R)'$ (with $W(R) = GW_0(R, \varepsilon) \varepsilon$ the trivial group—the Witt ring of R in the sense of Knebusch [6]).
 - (iii) The torsion subgroup of $GW_0(\pi)$ is annihilated by 4.

Indeed, using the general theory of the Burnside ring (cf. [1, especially §8, Theorem 8.2]), Theorem 3 implies Theorem 1 with $n = 4 \cdot |\pi|_{\Sigma}$. Theorem 3 itself follows from results of A. Fröhlich (cf. [4]) on $GW_0(R, \pi)$ for R a field of characteristic 0 and from

PROPOSITION 1. If K is the quotient field of R, then the natural map $GW_0(R,\pi) \to GW_0(K,\pi)$ is injective. Furthermore, if R has no formally real residue class field, then $GW_0(R,\pi)' \to GW_0(K,\pi)'$ is an isomorphism.

PROOF. Straightforward generalization of the argument for Satz 11.1.1 in [6]. Another way to prove Theorem 3 is to combine Proposition 1 with

PROPOSITION 2. Let L be a finite Galois extension of a field K with Galois group \mathfrak{G} , such that any ordering of K can be extended to L. Then we have $GW_0(K,\pi)' \cong (GW_0(L,\pi)')^{\mathfrak{G}}$ for the natural action of \mathfrak{G} on $GW_0(L,\pi)'$.

This follows from [1, Appendix B, Theorem 3.2], using Scharlau's induction technique for Witt rings (cf. [8] and also [1, Appendix A]).

PROPOSITION 3. Let us call a formally real field K a real splitting field for the group π , if for any irreducible $K\pi$ -module N and any formally real extension L of K the module $L \otimes_K N$ is an irreducible $L\pi$ -module. Then

- (i) $G_0(K,\pi) \cong G_0(R,\pi)$,
- (ii) $GW_0(K, \pi)' \cong G_0(K, \pi)' \otimes_Z W(K)'$.

Moreover if $n = \exp(\pi)$, ξ a primitive nth root of unity and K any formally

real field, then $K(\xi+\xi^{-1})$ is a real splitting field of π .

Propositions 1, 2 and 3 now imply the most important part of Theorem 3

$$GW_{0}(\pi)' = GW_{0}(\mathbf{Z}, \pi)'$$

$$\cong GW_{0}(\mathbf{Q}, \pi)' \cong (GW_{0}(\mathbf{Q}(\xi + \xi^{-1}), \pi)')^{6}$$

$$\cong (G_{0}(\mathbf{Q}(\xi + \xi^{-1}), \pi)' \otimes_{\mathbf{Z}} W(\mathbf{Q}(\xi + \xi^{-1}))')^{6}$$

$$\cong (G_{0}(\mathbf{R}, \pi)' \otimes_{\mathbf{Z}} W(\mathbf{Q}(\xi + \xi^{-1}))')^{6}$$

$$\cong G_{0}(\mathbf{R}, \pi)' \otimes_{\mathbf{Z}} (W(\mathbf{Q}(\xi + \xi^{-1}))')^{6}$$

$$\cong G_{0}(\mathbf{R}, \pi)' \otimes_{\mathbf{Z}} W(\mathbf{Q})' \cong G_{0}(\mathbf{R}, \pi)',$$

especially all torsion in $GW_0(\pi)$ is 2-torsion. The other parts of Theorem 3 need some more care. (But for R a field K one has of course

$$\begin{split} WG_{0}(K,\pi)' &\cong (WG_{0}(K(\xi+\xi^{-1}),\pi)')^{6} \\ &\cong (G_{0}(K(\xi+\xi^{-1}),\pi)' \otimes W(K(\xi+\xi^{-1}))')^{6} \\ &\cong (G_{0}(R,\pi)' \otimes W(K(\xi+\xi^{-1}))')^{6} \\ &\cong (GW_{0}(\pi)' \otimes W(K(\xi+\xi^{-1}))')^{6} \\ &\cong GW_{0}(\pi)' \otimes (W(K(\xi+\xi^{-1}))')^{6} \cong GW_{0}(\pi)' \otimes W(K)'; \end{split}$$

thus the same holds as well for Dedekind rings with no formally real residue class field. It also shows that for any field K all torsion in $GW_0(K, \pi)$ is 2-torsion, which was conjectured by A. Fröhlich in [4].)

To get rid of the factor 4 in Theorem 1 for $|\pi|_{\Sigma}$, odd, one has to use multiplicative induction theory as developed, for instance, in [2]. Reducing trivially to the case $\Sigma = \{2\}$ and using this technique, it is enough to prove the corresponding statement for groups of rather simple types: elementary abelian groups of order p^2 (p odd), nonabelian groups of order $p \cdot q$ (p, q odd primes) and semidirect products of cyclic groups of order p with elementary abelian 2-groups, on which the cyclic group of order p acts nontrivially and irreducibly. But in all these cases the torsion part of $GW_0(\pi)$ is easily shown to be nilpotent and thus one can use the fact that, in case all torsion elements in $GW_0(R,\pi)$ are nilpotent, the wanted result follows directly from Theorem 3 by AGN-methods and Burnside ring theory (cf. [1, especially §8, Theorem 8.2]). Actually I conjecture that for any group π all torsion elements in $GW_0(R,\pi)$ are nilpotent. This would allow us to avoid multiplicative induction techniques in this case completely; on the other hand, our induction theorem reduces this question to the case of 2-hyperelementary groups. I can prove the conjecture for a great number of special classes of groups, but right now

it seems to me, that a proof in the general case might be as complicated and even more involved than the multiplicative induction techniques I am using now.

REFERENCES

- 1. A. Dress, Notes on the theory of representations of finite groups. I: The Burnside ring
- of a finite group and some AGN-applications, Multicopied lecture notes, Bielefeld, 1971.

 2. ——, Contributions to the theory of induced representations, Proc. Conf. Algebra K-theory, (Seattle, Wash., 1972), Lecture Notes in Math., Springer-Verlag (to appear).

 3. A. Fröhlich and A. M. McEvett, The representations of groups by automorphisms of forms. In Algebra 12, (1969), 114, 122.
- forms, J. Algebra 12 (1969), 114-133.
- 4. A. Fröhlich, Orthogonal and symplectic representations of groups, Proc. London Math.
- Soc. (3) 24 (1972), 470-506.
 5. I. A. Green, Axiomatic representation theory for finite groups, J. Pure Appl. Algebra
- 1 (1971), 41-77.

 6. M. Knebusch, Grothendieck- und Wittringe von nicht ausgearteten symmetrischen Wiese Mach Natur K 1969/70, 93-157. MR 42 Bilinearformen, S. -B. Heidelberger Akad. Wiss. Math.-Natur. K 1969/70, 93-157. MR 42
 - 7. D. G. Quillen, The Adams conjecture, Topology 10 (1971), 67-80.
- 8. W. Scharlau, Induction theorems and the structure of the Witt group, Invent. Math. 11 (1970), 37-44.
- 9. R. Swan, K-theory of finite groups and orders, Lecture Notes in Math., vol. 149, Springer-Verlag, Berlin and New York, 1970.
- -, Induced representations and projective modules, Ann. of Math. (2) 71 (1960), 552-578. MR 25 #2131.
 - 11. C. T. C. Wall, Foundations of algebraic L-theory, Liverpool, 1972 (preprint).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BIELEFELD, BIELEFELD, FEDERAL RE-PUBLIC OF GERMANY