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ABSTRACT. The Grothendieck- and Witt- ring of orthogonal repre­
sentations of a finite group is defined and studied. The main application 
(only indicated) is the reduction of the computation of Wall's various 
L-groups for a finite group n to those subgroups of n, which are a semi-
direct product of a cyclic group y of odd order with a 2-group /?, such 
that any element in ft acts on y either by the identity or by taking any 
element in to its inverse. 

Let 7i be a finite group and R a Dedekind ring. An Krc-lattice (M, ƒ) or 
just M is defined to be a finitely generated, K-projective jR7i-module M 
together with a symmetric, 71-invariant nonsingular form ƒ : M x M -> R 
(cf. [3]). For two ^71-lattices Mx and M2 one has their orthogonal sum 
M1 J_ M2 and tensor product Mx ® M2, thus the isomorphism classes 
of Rrc-lattices form a half-ring Y+(R, n\ whose associated Grothendieck 
ring is denoted by Y(R, n). For a subgroup y ^ n one has in an obvious 
way, restriction and induction of JR7i-lattices, resp. jRy-lattices, and it is 
easily seen (cf. [3]) that this makes Y(Rr) into a G-functor in the sense of 
Green (cf. [5]). 

As in the theory of integral group-representations, where the Grothen­
dieck ring of isomorphism classes of i^7i-modules is much too large for 
many purposes and is thus replaced by its quotient G0{R, n) (in the sense 
of [9]) modulo the ideal, generated by the Euler characteristics of short 
exact sequences of ita-modules, we are going to define certain quotients 
of Y(R,n), using a relation which was first introduced by D. Quillen 
in [7, §5]. At first let us remark, that for any finitely generated R~ 
projective /^-module N, one has the associated hyperbolic module 
H(N) = (AT 0 N*9 ƒ ) with AT* = HomK(iV, R) the K-dua! of AT, con­
sidered as K7c-module (with (g • v)(n) = v{g~l • n\ g e TT, V e N*9 n e iV).and 
f(N9N) = /(N*,N*) = 0, f(n,v) = v(n\ neN, veN*. We now define 
a Quillen pair (M, N) to be an Kyr-lattice M = (M, ƒ ) together with an 
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#7r-submodule N Ç M, such that N is an R-direct summand (i.e., M/N 
and thus also N is jR-projective) and f(N, N) = 0. For example, (H(N)9 N) 
and (H(N)9N*) are Quillen pairs. If {M9N) is a Quillen pair, then 
N ^ N1 = {meM|/(m,N) = 0} and iV1 /^ is an K7c-lattice again. 

Let I x, resp. I2, £ T(JR, 7c) be the ideal, generated by all elements of the 
form [M] - [iV1/^] - [H{N)]9 resp. [M] - [ N 1 / ^ ] , where (M, IV) is a 
Quillen pair, and define G U0(R9n) = Y{R9n)/Il9GW0(R9n) = Y(K,TI) / / 2 . 

Because H(N) = 0 in GWoCR»71) o n e has ^ ç 72 and thus a natural 
surjection GU0{R9 n) -» 0 ^ ( 1 ^ , 7i). Moreover one checks easily, that the 
hyperbolic construction defines a well-defined map 

H: G0{R9n)->GU0(R9n), 

whose image is precisely the kernel of GU0(R, n) -• GW^C^^)» i-e-> w e 

have a natural exact sequence G0(R9 n) -* GU0(R9 ri) -• Glf0(^, 7i) -» 0. 
Finally the G-functor structure on Y(JR, -) carries through to a G-

functor structure on GU0(R9 -) and on GW0(R, -) and the above sequence 
behaves well with respect to restriction and induction. 

Now for a set § of subgroups of n define / (§ , GW0\ resp. / ( § , GC/0), to be 
the sum of the images of GW0{R9 y), resp. GU0{R9 y)9 {y e §) in GW0{R9 n\ 
resp. GU0(R, 7i), with respect to the induction maps from y to n. For 
a set £ of prime numbers let §2(7t) be the set of subgroups of 7c, which 
are p-hyperelementary (i.e. have a cyclic normal subgroup of p-power 
index) for some p e S, especially § (̂71) = {7 ^ 7c|y cyclic}. For the order 
M = r i P a p of 71 define ITTI, = Yl^PMr = FIp^Pap(thus |TC| = N s « N r ) . 
Then we have 

THEOREM 1. n • IQW^R^ e /(§E(7c), GW0) with n = \n\r for \n\T odd and 
n — 4- \n\r in any case. 

THEOREMI n • lGUoiR,n) e/(OS(TT), GL/0) wiffe 
w = I71!!' for R semilocal, \n\r odd9 

= 4 • \n\l> for R semilocal, 

= \n\l' for \n\r odd9 

= 4 • |7i|!> in any case. 

Since Gl/0CR, 7t) acts naturally as a Frobenius-functor on most (if not all) 
of the various L-groups, associated with a finite group n (cf. [11]), one 
thus can reduce the study of these L-groups to the case of p-hyperele-
mentary groups. Actually for any such L-functor—let it be called just L— 
one has 

COROLLARY 1. The various restriction maps define an isomorphism of 
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Lz(n) =D f Z[ l /p |p£E] ®L(n) onto the subgroup of Hye^n)1^ con' 
sisting of those tuples (xy)ye$l(w) vwY/i xy 6 LE(y), xv(<5 = xôfor any ô ^ y and 
x* = xgyg-1 for any gen (xy\S the restriction from y to ô, x -> xg t/ie natural 
isomorphism from Lz(y) onto L2(gyg-1), associated with g). 

PROOF. This follows the same way from Theorem 2 as R. Brauer's 
characterization of generalized characters among class functions by their 
restriction to elementary subgroups from his induction theorem. Thus it 
can also be considered as a special case of [1, §8, Appendix]. 

Using the above exact sequence and Swan's induction theorems for 
G0(R, n) (cf. [10]), Theorem 2 follows by a well-known trick, due to Swan 
(cf. the proof of Proposition 1 in [10, pp. 558-559]), from Theorem 1. 
Theorem 1 itself follows to some extent from the following result on the 
structure of GW0(R, n) : 

THEOREM 3. For any ring A write A' for Z[j] ® A. Then 

(i) GW0(n)' = D f GW0(Z, 7i)' s G0(R9 n)\ 
(ii) GW0(R,7z)' s GW0{n)' ®ZW(R)' (with W(R) = GW0(R,e)—s the 

trivial group—the Witt ring of R in the sense of Knebusch [6]). 
(iii) The torsion subgroup of GW0(n) is annihilated by 4. 

Indeed, using the general theory of the Burnside ring (cf. [1, especially 
§8, Theorem 8.2]), Theorem 3 implies Theorem 1 with n = 4-\n\r. 
Theorem 3 itself follows from results of A. Fröhlich (cf. [4]) on GW0(R, n) 
for R a field of characteristic 0 and from 

PROPOSITION 1. If K is the quotient field of R, then the natural map 
GW0(R, n) -+ GW0(K, n) is injective. Furthermore, if R has no formally 
real residue class field, then GW0(R,n)' -» GW0(K, n)' is an isomorphism. 

PROOF. Straightforward generalization of the argument for Satz 11.1.1 
in [6]. Another way to prove Theorem 3 is to combine Proposition 1 with 

PROPOSITION 2. Let L be a finite Galois extension of a field K with 
Galois group ©, such that any ordering ofK can be extended to L. Then we 
have GW0(K, n)' £ (GW0(L, n)')* for the natural action of © on GW0(L, n)'. 

This follows from [1, Appendix B, Theorem 3.2], using Scharlau's 
induction technique for Witt rings (cf. [8] and also [1, Appendix A]). 

PROPOSITION 3. Let us call a formally real field K a real splitting field 
for the group n, if for any irreducible Kn-module N and any formally real 
extension L of K the module L ® x N is an irreducible Ln-module. Then 

(i) G0(K,n)^G0(R,n), 
(ii) GW0(K, n)' s G0(K, n)' ®z W(K)'. 

Moreover ifn = exp(7c), ^ a primitive nth root of unity and K any formally 
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real field, then K{^ + ^ 1 ) is a real splitting field of n. 
Propositions 1, 2 and 3 now imply the most important part of 

Theorem 3 

GW0(n)' = GW0(Z9n)' 

= GW0(Q9n)' s (GW0(Q& + ^l)9n)ff 

s (GO(Q« + r1) , *y ®z w(eg + r1))')® 

sGodtTcyozWöfë + r1))')* 
SGo(K,7E)'®zW(ö)'SGo(*,7C)' , 

especially all torsion in GW0(n) is 2-torsion. The other parts of Theorem 3 
need some more care. (But for R a field K one has of course 

WG0(K9n)' s (WG0(K& + Ç" W F 

S (G0(Kfë + Ç-V) ' ® * W £ + r1))')* 

^ (Go^Tiyo^Kfë + r1))')* 

^(G^oWo^c^fë + r1))')® 

thus the same holds as well for Dedekind rings with no formally real 
residue class field. It also shows that for any field K all torsion in 
GW0(K9 n) is 2-torsion, which was conjectured by A. Fröhlich in [4].) 

To get rid of the factor 4 in Theorem 1 for |7i|r, odd, one has to use 
multiplicative induction theory as developed, for instance, in [2]. Re­
ducing trivially to the case Z = {2} and using this technique, it is enough 
to prove the corresponding statement for groups of rather simple types : 
elementary abelian groups of order p2 (p odd), nonabelian groups of 
order p- q (p,q odd primes) and semidirect products of cyclic groups of 
order p with elementary abelian 2-groups, on which the cyclic group of 
order p acts nontrivially and irreducibly. But in all these cases the torsion 
part of GW0(n) is easily shown to be nilpotent and thus one can use the 
fact that, in case all torsion elements in GW0(R9 n) are nilpotent, the 
wanted result follows directly from Theorem 3 by AGN-methods and 
Burnside ring theory (cf. [1, especially §8, Theorem 8.2]). Actually I con­
jecture that for any group n all torsion elements in GW0(R, %) are nil-
potent. This would allow us to avoid multiplicative induction techniques 
in this case completely ; on the other hand, our induction theorem reduces 
this question to the case of 2-hyperelementary groups. I can prove the 
conjecture for a great number of special classes of groups, but right now 
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it seems to me, that a proof in the general case might be as complicated 
and even more involved than the multiplicative induction techniques I 
am using now. 
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