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1. Subspaces in §2 . Let § be a Hilbert space over the complex field 
C, and let § 2 = § © § be the Hilbert space of all pairs {ƒ, g}, where 
ƒ, g G §>, with the inner product ({ƒ, g}, {h, k}) = ( ƒ, h) + (g, k). A subspace 
T in § 2 is a closed linear manifold in Jr>2; its domain Î)(T) is the set of 
all ƒ e § such that {ƒ g} eT for some g e §, and its range 9Î(T) is the set 
of all g e 9) such that {f,g]eT for some ƒ G §. For / e £ ( T ) we put 
T(f) = {ge§>!{ƒ,g} e T}. A subspace Tin § 2 is the graph of a linear 
function if T(0) = {0} ; in this case we say T is an operator in §>, and then 
we denote T( ƒ ) by Tjf. 

The adjoint T* of a subspace T in § 2 is defined by 

T* = {{fc, k} e £2|(g, A) = ( ƒ fc) for all {ƒ, g} e T}. 

If J is the unitary operator in § 2 given by J{f,g} = {g, —ƒ}, then 
T* = 9)2 © J7^ the orthogonal complement of JT in §2 . This shows that 
T* is also a subspace in §2 . 

If Tis a subspace in §2 , let T^ = {{ƒ, g} e T\f = 0}. Then Ts=TeTœ 

is a closed operator in §, and we have the orthogonal decomposition 
T= Ts®Tœ, with D(TS) dense in § © T*(0), 9t(T8) <= § © T(0). 

A symmetric subspace S in Jr>2 is one satisfying S cz 5*, and a selfadjoint 
subspace H is a symmetric one such that H = //*. If H = Hs © Hœ is 
a selfadjoint subspace in § 2 we have the result (due to Arens, [1, Theorem 
5.3]) that Hs, considered as an operator in § © H(0), is a densely defined 
selfadjoint operator there. This permits a spectral analysis of a selfadjoint 
subspace H, once its operator part Hs and its purely multi-valued part 
H^ have been identified. 

If S,S1 are symmetric subspaces in § 2 such that S a Sl9 then Sx is 
said to be a symmetric extension of S. In [3] (see also [2]) we described 
all symmetric and selfadjoint extensions of a symmetric subspace S in 
§2 . In this note we characterize precisely, in terms of "generalized 
boundary conditions", those selfadjoint subspace extensions of a non-
densely defined symmetric operator S in §. Applications to ordinary 
differential operators will be indicated in a subsequent note. Detailed 
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proofs will appear elsewhere. 
We require from [3, Theorems 12 and 15] two characterizations of the 

selfadjoint extensions H of a symmetric subspace S in §>2. All such satisfy 
S c H c S * ; l e t M = S* 0 S. 

THEOREM A. A subspace H is a selfadjoint extension of S in 9)2 if and 
only if H = S®MX, where M1 is a subspace of M satisfying JMX = MQMX. 

Alternatively, such H may be described in terms of the subspaces 
M± = {{K k} e S*|fc = ± ih). We have M = M + 0 M~ and the following 
result. 

THEOREM B. A subspace H is a selfadjoint extension of S in § 2 if and 
only if there exists an isometry V of M+ onto M~ such that H = S © 
(ƒ — V)M + , where I is the identity operator. Thus S has a selfadjoint 
extension in § 2 if and only if dim M+ = dim M~. 

2. Selfadjoint extensions of nondensely defined symmetric operators. 
Let S0 be a symmetric densely defined operator in §, and let § 0 be a 
subspace of §. Throughout this section we assume that 

(2.1) d i m § 0 = p < oo, d imM 0 < oo, M 0 = Sg © S0 . 

We define S to be the operator in § given by 

(2.2) T>(S) = D(S0) n ( S 0 §0), S <= S0. 

This operator is not densely defined, and so its adjoint will be a subspace 
which is not an operator. 

THEOREM 1. Let S be defined by (2.2), where (2.1) is assumed. Then S is 
a symmetric operator with T)(S) dense in § © § 0 , and 

(2.3) 5* = {{K S$h + <p}\h e D(SjJ), ^ G §o}, 

(2.4) dim M 1 = dim(M0)± + dim $ 0 . 

Thus S*(0) = §o and S* is the algebraic sum of S$ and (S*)^. From 
(2.4) and Theorem B it follows that S has selfadjoint extensions in § 2 if 
and only if dim(M0)+ = dim(M0)", that is, if and only if S0 has self­
adjoint extensions in Jr>. We now assume dim(M0)+ = dim(M0)" = co9 

and indicate how one can characterize any selfadjoint extension H oî S 
in 9)2 by means of "generalized boundary conditions". Theorem A implies 
that any such H = S © Mx can be thought of as H = S* © JMX, where 
dim M1 = p + œ. Thus 

H = {{h, k} G S*|(/c, a) - (K P) = 0 for ail {a, j8} G M X } , 

and (2.3) implies that H is the set of all {K S%h + cp}eS* satisfying 
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(2.5) <fca>-(fc,çO + foa) = 0 

for all {a, S$a + cpf}eM1. Here we have introduced the abbreviation 
</ra> = (Sg/i,a) - (A,SJa),/ï,a6D(SJ). By thinking of H as in (2.5) we 
obtain the following precise characterization. 

THEOREM 2. Let H be a selfadjoint subspace extension of S in Jr>2, with 
dim if (0) = s. Let an orthonormal basis for if (0) becpl9..., (ps, and suppose 
q>!,..., <ps, 9S + 1 , . . . , <pp is an orthonormal basis for S*(0) = § 0 . Then 
H is the set of all {h, S%h + qi) e S* swc/z t/iat 

(i) (h9q>j) = 0J= l , . . . , s , 
(ii) <W,> - (fc, £,.) = 0, 7 = p + 1,. . . , p + œ, 
(iii) p = d ^ i + • • • + cscps + Xk=s+1 Wh iïk) ~ <hyk>](pk, Cj e C arbit­

rary, 
where 

(a) y - + ! , . . . , y, 6 3>(S$), 
(b) <5P+1,..., (5p+coeT>(S<5) are linearly independent modD(S0), and 

<$$> = 0,7, fe = p + 1,. . . , p + co, 
( C ) ' C / = -Y£=s+i<&jyk><PkJ = p + l , . . . , p + <o, 
(d) <A; = Z?=s+1 [Ey - i<?A>]%, ; - s + l P,£JkeC,£ = (£jk) 

= £*. 
Conversely, let (pl9...,<pp be an orthonormal basis for § 0 , suppose 

yj,ôj exist satisfying (a), (b), and C,-,̂ - are defined by (c), (d). T/zen H 
defined via (i)-(iii) is a selfadjoint extension of S with dim H(0) = s. 

TTie operator part Hs of H is given by 

Hsh = Q0S$h+ X [(KM-<hyky]q>k9 
k = s + l 

where Q0 is the orthogonal projection of § onto § © if (0). 

With appropriate interpretations, Theorem 2 remains valid in the three 
cases: s = 0, s = p, and co = 0. If s = 0 then H is an operator extension 
of S, and those operator extensions H satisfying S0 c H c Sg are obtained 
by taking y,- = 0, £kj = 0, which results in £,- = 0, ij/j = 0. Then 

D(H) = {fc e T)(5g)|</i^> = 0,7 = p + 1,.. . , p + co}, 

<<5,<5k> = 0, 7, fe = p + 1,. . . , p + co, 

which is the known characterization of such H. If co = 0 and s = p, 
if (0) = § 0 and Hsh = QoS0h. Thus, given any selfadjoint operator S0 in 
§, with T)(S0) dense in §, and subspace § 0 e §, dim § 0 < oo, the 
operator Hs on § © § 0 defined by //siz = Q0S0h is a densely defined 
selfadjoint operator. This is a result due to W. Stenger [4, Lemma 1]. 
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