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1. Introduction. In the theory of optimization a number of closure and 
lower closure theorems have been obtained in different contexts and under 
a variety of conditions and modes of convergence. Particularly, "seminor-
mality" conditions have been playing different roles. 

In §3 of the present paper we show that much more general and more 
satisfactory results can be obtained in terms of orientor fields. The closure 
and lower closure theorems so obtained are proved indeed under a mini­
mum of conditions, and they contain as particular cases analogous 
theorems so far obtained in the more particular context of Mayer and 
Lagrange problems (§4). The proofs of the present theorems are given in 
[1] and are rather simple. Also, the statements show the interplay of modes 
of convergence versus seminormality conditions. The results are based on 
the use of the Banach-Saks-Mazur theorem on weak convergence in 
normed spaces. 

In §4 we state closure and lower closure theorems for Mayer and 
Lagrange problems. In particular, theorems of this type are stated under 
no seminormality condition at all, but under suitable Lipschitz-type, and, 
more satisfactorily, under sole growth-type conditions [3]. Finally, even 
these Lipschitz-type and growth-type conditions can be dispensed with. 
Indeed, on the basis of the present considerations, we prove in [2] lower 
semicontinuity theorems for free problems of the calculus of variations in 
which only continuity and convexity hypotheses are made. Corresponding 
closure and lower closure theorems for orientor fields, Mayer and Lagrange 
problems are also proved in [2]. 

2. Notations. Points in spaces £v, En, Er+l will be denoted by 
t = (t\ . . . , O, * = (x\ . . . , xnl and (z°, z) = (z°, z 1 , . . . , z% or (rj,Q = 
(rj, Ç1,..., <f ). Let A be a given subset of Ev x J^, A0 the projection of A 
on £v, and A(t) = [x e En\(t, x) e A], teA0. We denote by clZ, coZ, 
|Z|, the closure, the convex hull, and the outer Lebesgue measure of a 
set Z in EN. For every (t, x ) e i a subset R(t,x) of 2v+1 is assigned. Let 
G, Tbe given subsets of A0, G measurable with finite measure, Tof measure 
zero, T a G a Ev. We denote by AG and AT the sets AG = [(£, x) e A\t e G], 
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AT = [(t9 x)eA\te T]. For every (ï9x)eA and ô > 0 we denote by 
iV^Cx) the set of all points (ï, x) 6 A at a distance <̂5 from (ï, 3c). Only the 
following concepts of upper semicontinuity of variable sets are of interest 
here. We say that the sets R(t9 x) satisfy (Kuratowski's) property (K) with 
respect to x at (ï, x) provided 

R(ï9 3c) = f) cl U R& *)• 
<5>0 Çt,x)eNôrt(x) 

We say that the same sets R(t9 x) satisfy property (Q) with respect to x 
at (ï, x) provided 

R(ï9x) = p| cl co (J R(ï9x). 
ô>0 (t,x)eNô.,t(x) 

We shall say that the sets R(t9 x) satisfy property (K), or property (Q) with 
respect to x in a subset A' of A if the corresponding property holds at 
every (t9 x) e A'. Sets R(t9 x) possessing property (K) are closed, and sets 
possessing property (Q) are closed and convex, as intersections of sets 
having the same properties. We proved elsewhere that property (Q) for 
Lagrange problems is the extension of Tonelli's and McShane's seminor-
mality condition for free problems. We shall consider systems of measur­
able functions £(£), r\(t)9 x(t)9 teG9 satisfying the orientor field relations 

x(t)eA(t)9 (rj(t)^(t))eR(t,x(t)\ teG (a.e.). 

In applications, the sets R(t9 x) have a particular structure, namely they 
have the property (n): for every (z°, z) e R(t9 x) and z° ^ z°, then also 
(z°9z)eR(t9x). 

3. The main statements: the lower closure theorems for orientor fields. 
(3.i) I f T c G c £ v , \T\ = 0, \G\ < oo, if the sets A(t) are closed for 

teG — T9 if the sets R(t9x) satisfy property (Q) with respect to x in 
AG - AT9 if Ç(t)9 x(t)9 £k(t)9 rjk(t)9 xk(t)9 X(t)9 Xk(t)9 t e G, k = 1,2,..., are 
measurable functions, £, £k e (L^G))', rjk e LX(G)9 such that 

xk(t) e A(t)9 (rjk(t)9 Çk(t)) e R(t9 xk(t))9 t e G (a.e.), k = 1,2,..., 

— oo < i = lim inf rjk(t) dt < oo, 

m Çk -• £ weakly in (L^G))1", xk(t) -> x(t) in measure in G as k -* oo, 

/̂k(0 ^ Ak(t), A, Ak e L^G), Afe -» A weakly in L^G), 

then there is a function rç(t), teG9rje LX(G)9 such that 

x(t) e A(t)9 (rj(t)9 m) e R(t9 x(t))9 t e G (a.e.) 

rj(t) dt ^ i. 
<JG 
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In this formulation of statement (3.i) the inequality i > — oo is a con­
sequence of the requirements on the functions A, Ak. Functions A, Xk 

satisfying these requirements are easily found in a number of situations, 
for instance if one of the following conditions is satisfied : 

(a) There are a function \j/(t) §: 0, teG, I/^GL^G), and a constant 
7 ^ 0 such that (z°, z) G R(t, x) implies z° ^ - \f/(t) - y\z\. 

(ƒ?) x, xk G (LP(G))", ||xk — x\\p -• 0,1 ^ p < oo, and there are ^ as above, 
and constants y9 y' ^ 0 such that (z°, z) e #(£, x) implies z° ^ — î (t) — 
y\x\p - y'\z\. 

Other analogous conditions are stated in [1]. Examples in [1] show that 
the conclusions of (3.i) may not hold if the conditions relative to the 
functions A, Ak are not satisfied. However, statements analogous to (3.i) 
have been proved under alternate hypotheses concerning the functions 
A, Ak. 

For instance, for the functions A, Ak we may require only that they are 
measurable (A can even take values -co), and that they satisfy the alternate 
requirements : 

rjk(t) ^ Xk{t\ Ak(t) ̂  Afc+1(t), Xk(t) -» A(0 pointwise, 

(Ak(0, &(*)) e R(t9 xk(t)% t G G (a.e.), fc = 1,2,... . 

In this situation, however, the function rj in statement (5.i) may be only 
measurable, finite almost everywhere, with L-integral jG r]{t) dt finite, or 
— oo, satisfying (2) as stated. If in addition the sets R(t, x) have property 
(7i), then rjeL^G). 

(3.ii) The same as (3.i) where the sets R(t, x) satisfy property (K) with 
respect to x in AG — AT, and Çk(t) -> £(t) in measure in G as k -> oo. 

There are situations where the sequences ^k(t\ r\k(t\ xk(t% teG, k = 
1,2,..., satisfying (i/k(*), £k(f)) e K(£, xk(t)), t G G (a.e.), with £k -> <* weakly 
in (L^G))**, lim JG rçk(£) A = i, xk(t) -» x(r) in measure in G as fc -» oo, can 
be replaced by sequences lk(t\ rjk(t), x(t\ te G, k = 1,2,..., satisfying 
{lk(t\ fjk(t)) G R(t, x(t)\ t G G, and where | k still converges to £ weakly in 
(L^G))' and lim JG fjk(t) dt = i. Actually, it occurs that ôk(t) = £k(f) -
|k(t) -+ 0 weakly in (L^G))' and ôg(r) = rjk(t) - fjk(t) -* 0 weakly in L^G) 
as k -> oo. There is a large class of problems for which this can be proved, 
and the sets R(t, x) need be assumed only convex and closed (no property 
(Q) or (K) required). The following simple statement suffices for these 
problems. 

(3.iii) The same as (3.i) where now the sets R(t, x) are only convex and 
closed for every (t, x)e AG — AT, where £(r), x(t), £>k{t\ r\k{t\ teG, k = 
1,2,..., are measurable functions, £, £ke(L1(G))r, r\keLi(G\ such that 
x(t)sA{t\ (rjk(t\ Çk(t))eR{t,x(t)), teG (a.e.), k= 1,2,..., -oo < * = 
liminf/Grçk(f) <fr < +co, and £k -» <* weakly in (L^G))'. Then, there is a 
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function rj(t), teG9 rje LxiG)9 such that (rj(t), Ç{t)) e R{t, x(t)), t e G (a.e.), 
and JG rj(t) dt ^ L 

These theorems (3.i-iii) apply to Lagrange problems (see §4 below) as 
well as to Mayer problems with comparison functionals. For Mayer 
problems without comparison functionals one has only to take R(t, x) c 
[(z°, z)eEr+1\z° = 0] and rj(t) = r,k(t) = 0. 

Theorems analogous to the ones above hold where r\ is a vector function 
of some s components, and the sets R(t, x) are subsets of 2JJ.+S. 

4. Lagrange and Mayer problems. Points in an auxiliary space B^ will 
be denoted by u = (w1, . . . , um). The sets A9 A09 A(t\ G, T are as in §2, and 
now for every (t, x)eA a. subset U(t, x) of JE^ is assigned. Let M denote 
the set M = [(*,x,w)|(r ,x)ei,«e £/(£,x)], let 

/0(f, x, w), ƒ(t, x, w) = ( / i , . . . , ƒ.) 

be given functions defined on M, and let R(t, x), g(t, x) denote the sets 

R(t, x) = [(z°, z)|z° ^ /0(f, x, w), Z = ƒ(*, x, u\ u 6 (7(t, x)] a Er+U 

QiU x) = [z\z = ƒ(£, x, u)9 u G UiU x)] <= Er. 

We say that a Carathéodory continuity condition (C) is satisfied provided 
for every e > 0 there is some compact subset Kof G such that | G — K\ < s9 

the sets AK = [(t9x)eA\teK]9 MK = [it9x9u)eM\te K] are closed, and 
/0(t, x, M), ƒ (t, x, u) are continuous on Mx . Then, the sets Ait) are certainly 
closed for almost all t e G. The following statements are corollaries of 
(3.i-iii). 

(4.i) If T c G c £v, |T| = 0, |G| < oo, if condition (C) holds, if the sets 
K(£, x) defined above satisfy property (Q) with respect to x in AG — AT9 

if Ht\ x(0, £*(*)> ̂ /k(0» *fc(0> M0> A(0, Ak(0, t G G, k = 1,2,... , are measur­
able functions, £, £k G (LiJ^G)/, rjk9 X9 kk e L^G), such that 

xh(t) G X(0, uh(t) G [ƒ (t, xk(0), &(t) = f(t, xkit)9 ukit)\ 

riM = f0(t, xkit)9 ukit))9 t G G (a.e.), k = 1,2,... , 

(3) — oo < i = lim inf f/k(t) dt < 4- oo, 
JG 

Çk-+ Ç weakly in iLxiG))r
9 xk(t) -• x(0 in measure, 

mit) ^ Xkit\ Xk -> X weakly in LxiG)9 

then there is a measurable function w(t), t G G, such that 

x(t) G ,4(0, w(0 G £/(£, x(0), 
(4) 

£it) = fit9xit)9uit))9 teG (a.e.), 
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and such that, if r\0(t) = f0(t, x{t), u(t)), t e G, then JJ0 is measurable and 

(5) { tloit)dt£i. 

Here jGrj0(t)dt as a Lebesgue integral exists (finite, or — oo) and (5) 
holds as stated. Indeed, if r\{t\ t e G, is the function whose existence was 
proved in (3.i), we have here rj0(t) = f0(t,x(t\u(t)) ^ rj(t\teG (a.e.). 
Under the sole hypotheses of (4.i) the integral jG rj0 (t) dt may well be 
— oo, as examples show. Nevertheless, there is a variety of conditions, 
usually satisfied in applications, which guarantee that rj0 is of class 
L^G), the integral jG rj0(t) dt is finite, (5) holds as stated, and the conditions 
relative to the functions A, Xk are all satisfied. Here are some of these 
conditions. 

(ao) foiU x, u) ̂  — \jj(i) — y\f(t, x, u)\ for all (£, x, u) e M, for some given 
function \j/(t) ^ 0, £ G G, i/f e LX(G\ and constant y. 

(Po) fo(t9x,u)^. — \//(t) — y\x\p — y'\f(t,x9 u)\ for all (t, x9 u)eM, for 
some \// as above and constants y, y' ^ 0, and in addition we know that in 
(4.i) we have x, xk e (Lp(G))r, \\xk — x\\p -> 0 as k -• oo, 1 ^ p < oo. 

Analogous conditions can be formulated for functions x, Xfc, or w, uk 

in suitable classes Lp or Lœ. 
(4.ii) The same as (4.i) where the sets R(t, x) satisfy only property (K) 

with respect to x in AG — AT and £k -• £ in measure in G as fe -^ oo. 
Finally, if the sets U(t) depend on t only, so that the differences 

àuit) = ih(t) - &(f) = f(t, xfc(0, uk(tj) - ƒ(*, x(t), uk{i)\ 

ök(t) = rjk(t) - fjk(t) = fob xk(t\ uk(t)) - /0(t, x(t), iikW), 

t e G, fc = 1,2,... 

exist, and we know that ök(t) -• 0, ök -• 0 weakly in Ll9 then we can replace 
the sequence £k(0, */fc(0> **(*)> M 4 £ G G, fc = 1,2,..., by the sequence 
lk(0> ̂ k(0> *W> Mk(0» teG,k = 1,2,..., satisfying now the orientor field 
relation (^),jJk(t))GR(t, x(t)), £eG(a.e.),fc = 1,2,... . The following 
theorem is now a corollary of (3.iii). 

(4.iii) The same as (4.i), where now the sets JR(t, x) are only convex and 
closed for every (t, x) G AG — AT9 the sets U(t) depend only on t, relations 
(3) hold, with & Zk9 ôk G (L^OY, nk, b\ G LX(G\ £k -> £, <5k ^ 0 weakly in 
(L1(G))r, ôk -+ 0 weakly in L^G). Then, there is a measurable function 
u{t\ t G G, such that (4) and (5) hold. 

Theorems (4.i-iii) apply to abstract multidimensional Lagrange prob­
lems, and to Mayer problems with comparison functional. Analogous 
theorems for Mayer problems without comparison functional (closure 
theorems) are simply obtained by taking f0 = 0,rj(t) = rjk(t) = 0. 
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5. A few criteria for ôk, ök to approach zero in Lx. We list here a few 
conditions on ƒ and f0 under which ||̂ fc||i9 ll̂ fclli -* 0. For the sake of 
brevity we limit ourselves to ƒ and the differences ôk. More conditions and 
details are discussed in [3]. These conditions are of the Lipschitz-type 
{Fp.F^ below), and of the growth-type (Gpq, Gœq, Hq, etc.). Also these 
results, that we mention here briefly for their practical significance and 
simple proof, improve on previous known ones. However, it is worth 
mentioning here that, as we prove in [4], the same conditions under 
consideration imply some weak form of property (Q), which is still 
sufficient for the application of our main argument in (3.i) and (4.i). 

(Fp) For 1 ^ p < oo, X, Xfc 

| ƒ(*, xk(t\ uk(t)) - f(t9 x(t)9 uk(t))\ ̂  Fk(t)h(\xk(t) - x(f)|), t e G, 

k = 1,2,..., where /i(Ç), 0 ^ Ç < + oo,is a given monotone nondecreasing 
function with fi(0 + ) = 0, h{Q ^ c£\ c ^ 0, 0 < y ^ p, for all Ç ^ Co è 0 
(c, y, Co given constants), and Fk(t) ^ 0, teG, FkeLP(G\ given functions 
with p' = p/(p — y\ (p' = oo if y = p), and \\Fk\\p. ^ C, a given constant. 

(Gpq) For 1 ̂  p, q < oo, x, xke(Lp(G))\ u, uke(Lq(G))m, \\x\\p, \\xk\\p ^ 
ô> \\u\\q> \\uk\\q ^ M^o> ̂  given constants), xk(t) -• x(t) in measure in G 

as k -> oo, and there are constants c, c', a, /?, 0 < a ^ p, 0 < /? ̂  q, and 
a function ^(r) ^ 0, t G G, i// e LX(G\ such that for all (£, x, w), (£, y, u) e M 
we have 

|/(t,x,u) - f(t,y,u)\ g iAW + c ( l* r a + | # " a ) + d u r ' . 

(Hq) For 1 ^ g < oo, x, xk measurable, xk(t) -+ x(t) in measure in G as 
k -• oo, w, wke(L^(G))m, ||u||€, ||ujg ^ L, a constant, and there are other 
constants c', jS, 0 < ƒ? ^ g, and a function ^ as above such that for all 
(£, x, u\ (r, y,u)e M we have 

| / ( t ,x , i i ) - / ( f ,y ,u ) | ^^ (0 + c ' | i ir^ 

Conditions (G^), (Hœ), and others can be formulated analogously. 
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