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1. Introduction. Let £li9 i = 1, 2, be regions in the complex plane, f(z) 
a quasiconformal mapping of Cll onto Q2- Let Qf denote the class of all 
quasiconformal mappings of Q t onto Q2 which have the same boundary 
values as ƒ A mapping ƒ * e Qf will be called extremal for its boundary 
values if it is iC*-quasiconformal and if there exists no K-quasiconformal 
mapping in Qf with K < K*. The quantity iC* = K*(f) is the extremal 
dilatation for the class Qf. (As is well known [3], there may be more than 
one X*-quasiconformal mapping in the class Qf.) In the present account, 
which is only an abstract, we restrict ourselves to the case Q1 = Q2 — E 
= {\z\ < 1}. Generalizations to Riemann surfaces will be referred to in a 
detailed account, giving proofs, further results, and applications that is to 
appear elsewhere. 

In what follows, the L1 norm ƒ J£ \<p(z)\ dxdy of functions cp(z) holo-
morphic in E will be denoted by \\q>\\. 

In 1969, R. S. Hamilton [1] proved the following: If ƒ* e Qf is an 
extremal mapping, K*(Z) = ƒ*/ƒ*, then 

(1.1) sup K*(z)(p(z) dx dy 
IMI<1 JJ 

K*( f) - 1 
u ; K*(f) + 1 

A central result of the present work is (§3) that condition (1.1) charac­
terizes extremal mappings of E. 

2. Estimates for K*(f). The following is a generalization of an inequality 
proved in [2] from the case K*(ƒ) = 1 to arbitrary K*(f). 

THEOREM 2.1. Iff(z) is a quasiconformal self-mapping of E, K(Z) = f-z\fz, 
and if cp(z) is holomorphic in £, then 

\ \ 

K(Z) 

q>(z)dxdy \-\K(Z)\ 
< IMI 

( 2 - ] ) CC \K(Z)\2 

\+k*(f)' 

AM S (MOS) subject classifications (1970). Primary 30A60. 
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For certain special holomorphic functions <p(z) the quantity on the 
left side of (2.1) can be estimated in a useful way from below. Let us select 
n equally spaced points on {\z\ = 1}, n ^ 4. These are mapped by w = f(z) 
onto n points of {|w| = 1}. The unique extremal quasiconformal mapping 
of E onto £, which preserves this correspondence of n-gons, is [4] a 
Teichmüller mapping with complex dilatation 

K(vJ?)l\<Pn(z)\)> 

where cpn(z) is holomorphic in E and has finite norm ||<pj|. Without loss 
of generality we can assume that ||<pj = 1. It is then possible to prove 
the following : 

THEOREM 2.2. Letf(z) be a quasiconformal self mapping ofE, K(Z) = f/fz. 
Let n ^ 4 points be selected on ÔE and kn and (pn(z) determined as above. Then 

111 ra^-«H * T V ƒƒ i ^ . w * * 
'E I E 

Given/, let us introduce the quantities 

' (KW = m% / (ƒ )= sup I \ \ ^ % d x d y 
E 

A , n f f \K(Z)\2\CP(Z)\ A 

A(/) = sup ——-j-dxdy. 
IMI<i J J 1 - k(z)|2 

The following then follows easily as a corollary of Theorems 2.1 and 2.2 : 

THEOREM 2.3. The maximal dilatation K*( ƒ ) w/ncfr is extremal for the 
class Qf satisfies the estimate 

1 

1 - 21(f) + 2A(ƒ) 
^ £*(ƒ) ^ 1 + 2J(/) + 2A(/). 

REMARK. When ƒ is a Teichmüller mapping with finite norm both 
inequalities become equalities. 

3. Characterization of complex dilatations of extremal mappings. Let 

H(f) = sup K(z)cp(z)dxdy\ 
11*112É1 V I 

By means of Theorem 2.2 one obtains a new proof of Hamilton's necessary 
condition (1.1), with an explicit identification of an extremal sequence 
for tf(/): 

THEOREM 3.1. Iff * e Qf is extremal, K*(Z) =fpf*, then 
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lim K*(z)cpn(z) dx dy 
n-*oo * * 

= H(f) = £*(ƒ). 

Furthermore, as a deduction from Theorem 2.3, the converse also 
follows : 

THEOREM 3.2. A necessary and sufficient condition for the quasiconformal 
mapping/of E onto E to be extremal for its boundary values is that 

H(f) = ess sup \K(Z)\. 
zeE 
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