EXTREMAL PLANE QUASICONFORMAL MAPPINGS WITH GIVEN BOUNDARY VALUES

BY EDGAR REICH AND KURT STREBEL Communicated by F. W. Gehring, October 23, 1972

1. Introduction. Let Ω_i , i = 1, 2, be regions in the complex plane, f(z) a quasiconformal mapping of Ω_1 onto Ω_2 . Let Q_f denote the class of all quasiconformal mappings of Ω_1 onto Ω_2 which have the same boundary values as f. A mapping $f^* \in Q_f$ will be called *extremal* for its boundary values if it is K^* -quasiconformal and if there exists no K-quasiconformal mapping in Q_f with $K < K^*$. The quantity $K^* = K^*(f)$ is the extremal dilatation for the class Q_f . (As is well known [3], there may be more than one K^* -quasiconformal mapping in the class Q_f .) In the present account, which is only an abstract, we restrict ourselves to the case $\Omega_1 = \Omega_2 = E = \{|z| < 1\}$. Generalizations to Riemann surfaces will be referred to in a detailed account, giving proofs, further results, and applications that is to appear elsewhere.

In what follows, the L^1 norm $\iint_E |\varphi(z)| dx dy$ of functions $\varphi(z)$ holomorphic in E will be denoted by $||\varphi||$.

In 1969, R. S. Hamilton [1] proved the following: If $f^* \in Q_f$ is an extremal mapping, $\kappa^*(z) = f_{\overline{z}}^*/f_z^*$, then

(1.1)
$$\sup_{\||\varphi\|| \leq 1} \left| \int_{E} \kappa^{*}(z)\varphi(z) \, dx \, dy \right| = k^{*}(f) = \frac{K^{*}(f) - 1}{K^{*}(f) + 1}.$$

A central result of the present work is (\$3) that condition (1.1) characterizes extremal mappings of E.

2. Estimates for $K^*(f)$. The following is a generalization of an inequality proved in [2] from the case $K^*(f) = 1$ to arbitrary $K^*(f)$.

THEOREM 2.1. If f(z) is a quasiconformal self-mapping of E, $\kappa(z) = f_{\overline{z}}/f_z$, and if $\varphi(z)$ is holomorphic in E, then

(2.1)
$$\left| \iint_{E} \frac{\kappa(z)}{1 - |\kappa(z)|^{2}} \varphi(z) \, dx \, dy \right| \leq \frac{k^{*}(f)}{1 + k^{*}(f)} \|\varphi\| + \iint_{E} \frac{|\kappa(z)|^{2}}{1 - |\kappa(z)|^{2}} |\varphi(z)| \, dx \, dy.$$

AMS (MOS) subject classifications (1970). Primary 30A60. ¹ Supported by GP 27275.

Copyright © American Mathematical Society 1973

For certain special holomorphic functions $\varphi(z)$ the quantity on the left side of (2.1) can be estimated in a useful way from below. Let us select n equally spaced points on $\{|z| = 1\}, n \ge 4$. These are mapped by w = f(z) onto n points of $\{|w| = 1\}$. The unique extremal quasiconformal mapping of E onto E, which preserves this correspondence of n-gons, is [4] a Teichmüller mapping with complex dilatation

$$k_n(\varphi_n(z)/|\varphi_n(z)|),$$

where $\varphi_n(z)$ is holomorphic in *E* and has finite norm $\|\varphi_n\|$. Without loss of generality we can assume that $\|\varphi_n\| = 1$. It is then possible to prove the following:

THEOREM 2.2. Let f(z) be a quasiconformal self mapping of E, $\kappa(z) = f_{\overline{z}}/f_z$. Let $n \ge 4$ points be selected on ∂E and k_n and $\varphi_n(z)$ determined as above. Then

$$\left| \iint\limits_E \frac{\kappa(z)}{1-|\kappa(z)|^2} \varphi_n(z) \, dx \, dy \right| \geq \frac{k_n}{1-k_n} - \iint\limits_E \frac{|\kappa(z)|^2}{1-|\kappa(z)|^2} \left| \varphi_n(z) \right| \, dx \, dy.$$

Given f, let us introduce the quantities

$$I(f) = \sup_{||\varphi|| \le 1} \left| \int_{E} \int \frac{\kappa(z)\varphi(z)}{1 - |\kappa(z)|^2} dx dy \right| (\kappa(z) = f_{\bar{z}}/f_z),$$

$$\Delta(f) = \sup_{||\varphi|| \le 1} \int_{E} \int \frac{|\kappa(z)|^2 |\varphi(z)|}{1 - |\kappa(z)|^2} dx dy.$$

The following then follows easily as a corollary of Theorems 2.1 and 2.2:

THEOREM 2.3. The maximal dilatation $K^*(f)$ which is extremal for the class Q_f satisfies the estimate

$$\frac{1}{1 - 2I(f) + 2\Delta(f)} \le K^*(f) \le 1 + 2I(f) + 2\Delta(f).$$

REMARK. When f is a Teichmüller mapping with finite norm both inequalities become equalities.

3. Characterization of complex dilatations of extremal mappings. Let

$$H(f) = \sup_{||\varphi|| \le 1} \left| \int_{E} \int \kappa(z)\varphi(z) \, dx \, dy \right|$$

By means of Theorem 2.2 one obtains a new proof of Hamilton's necessary condition (1.1), with an explicit identification of an extremal sequence for H(f):

THEOREM 3.1. If $f^* \in Q_f$ is extremal, $\kappa^*(z) = f_{\overline{z}}^*/f_z^*$, then

$$\lim_{n\to\infty}\left|\iint_{E} \kappa^{*}(z)\varphi_{n}(z)\,dx\,dy\right| = H(f) = k^{*}(f).$$

Furthermore, as a deduction from Theorem 2.3, the converse also follows:

THEOREM 3.2. A necessary and sufficient condition for the quasiconformal mapping f of E onto E to be extremal for its boundary values is that

$$H(f) = \operatorname{ess\,sup}_{z \in E} |\kappa(z)|.$$

References

1. Richard S. Hamilton, Extremal quasiconformal mappings with prescribed boundary values, Trans. Amer. Math. Soc. 138 (1969), 399-406.

 Edgar Reich and Kurt Strebel, On quesiconformal mappings which keep the boundary points fixed, Trans. Amer. Math. Soc. 138 (1969), 211–222. MR 38 #6059.
Kurt Strebel, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises. I, II, Comment. Math. Helv. 36 (1962), 306–323; ibid. 39 (1964), 77–89. MR 31 #346.

-, Über quadratische Differentiale mit geschlossenen Trajektorien und extremale 4. quasikonforme Abbildungen, Festband zum 70, Geburtstag von R. Nevanlinna, Springer, Berlin, 1966, pp. 105-127.

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455

MATHEMATISCHES INSTITUT, UNIVERSITÄT ZÜRICH, CH-8006 ZÜRICH/ZH, SWITZERLAND