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We shall be concerned with the autonomous differential equation 

(1.1) u\t) + Au(t) = 0, M(0) = x, 

where A is a weakly continuous possibly nonlinear operator mapping a 
reflexive Banach space X to itself. Recently S. Chow and J. D. Schuur [2] 
have considered existence theory for ordinary differential equations 
involving weakly continuous operators on separable, reflexive Banach 
spaces. 

We now make clear our notion of strong solutions to (1.1). 
DEFINITION 1.2. A function u: [0, T) -> X is said to be a strong solution 

to the Cauchy problem 

u\t) + Au(t) = 0, w(0) = x, 

provided that u is Lipschitz continuous on each compact subset of [0, T), 
w(0) = x, u is strongly diflerentiable almost everywhere and 
u\t) + Au(t) = 0 for a.e. t e [0, T). 

By employing a variant of the Peano method we provide local solution 
to (1.1). 

LEMMA 1.3. Let X be a reflexive Banach space and suppose that A is a 
weakly continuous operator with D(A) = X. Then there is a finite interval 
[0, T) such that the Cauchy problem (1.1) has a strong solution on [0, T). 

DEFINITION 1.4. An operator A is said to be accretive provided that 
||x + XAx - (y + XAy)\\ ^ ||x - y\\ for all X ^ 0 and x, y e D(A). T. Kato 
[5] has shown that this definition is equivalent to the statement that 
Re(^x — Ay,f) ^ 0 for some feF(x — y) where F is the duality map 
from X to X*. 

If we require that the operator A be accretive we are able to extend the 
local solution of Lemma 1.3 to a global solution. 

THEOREM 1.5. Let X be a reflexive Banach space and suppose that A is a 
weakly continuous accretive operator with D(A) = X. Then the Cauchy 
problem (1.1) has a unique strong global solution on [0, oo). 
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If we set u(t) — T(t)x we obtain a semigroup of nonlinear nonexpansive 
operators {T(t):t ^ 0} which map X to X. We can say that {T(t):t ^ 0} 
is the semigroup associated with A. The next theorem provides an 
exponential representation for {T(t):t ^ 0}. 

THEOREM 1.6. Let A and X satisfy the conditions of Theorem 1.5. Then 
the operator A is m-accretive, i.e., R(I + XA) = X for all A ̂  0. If 
{T(t): t ^ 0} is a semigroup associated with A then T(t) may be represented 
as the pointwise limit 

T(t)x = lim (ƒ + t/nA)~nx. 

Moreover, for each fixed t0 > 0, the operator T(t0) is weakly continuous. 

The m-accretiveness of A is obtained by considering the equation 
u\t) + A'u{t) = 0 where A' = A + I. Once the m-accretiveness of A has 
been established the exponential representation of {T(t):t g; 0} follows 
immediately from a theorem of M. Crandall and T. Liggett [1]. The fact that 
T(t0) is weakly continuous is obtained by showing that (7 + XA)~X is 
weakly continuous for all A ̂  0 and employing estimates of Crandall and 
Liggett. The foregoing results may be applied to the rest point theory 
developed by G Yen [10]. 
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