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Introduction. In harmonic analysis, it is important to know how various 
properties of a function on Rn reflect themselves as restrictions on its 
spectrum, i.e., the support of its (distributional) Fourier transform. Thus, 
according to Paley and Wiener, a compact spectrum is characteristic of 
entire functions of exponential type. In this note we consider a milder 
restriction : it is only required of the spectrum that it be smaller than the 
whole rc-space. Our results extend those of Levinson, Logan, Ehrenpreis 
and Malliavin ; cf. also Boas [1]. Here we give only bare outlines of proofs ; 
we employ standard vector notations : t = (tl9..., tn) and x = (xu ... xn) 
are points of Rn and (t, x) denotes £ " tjXji \t\ = (t, t)1/2, and at denotes 
Haar measure on Rn. 

1. A gap in a distribution on Rn is a nonvoid open ball disjoint from its 
support. A spectral gap in a tempered distribution is a gap in its Fourier 
transform. In particular, an L1 function ƒ has a spectral gap if its Fourier 
transform ƒ (x) vanishes on some nonvoid open set. Such ƒ cannot decay 
too rapidly, by virtue of the following result of N. Levinson. 

THEOREM A. Let f e L1 (R), and suppose for some ô > 0 

/•CO 

(1) | / ( r ) | e*d t<oo . 
Jo 

Then, iff(x) vanishes throughout any interval, it vanishes identically. 

For the proof, one need only check [4, p. 74] that (1) implies that ƒ (x) 
is the boundary value of a function holomorphic in a strip above the real 
axis. (Actually Levinson, loc. cit., proves much deeper results, with (1) 
replaced by weaker hypotheses that do not force analyticity of f(x). An 
account of these, based on a new and simple method, will be given by me in 
a subsequent paper. The weaker Theorem A will serve as a basis for the 
present discussion.) 

Theorem A admits a straightforward generalization to Rn. Let us say 
that a convex cone K in Rn (all cones will be supposed to have vertex at 
the origin) is minor if there exists a unit vector t° e Rn such that inf(t°, t) ; 
teK, \t\ = 1, is positive. Thus, a half-line in R1, or a sector of opening 
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less than n in R2, are minor. (It is easy to see that an open convex cone 
K is minor if and only if there exists a nonsingular linear transformation 
of Rn carrying K onto the "first quadrant", i.e., the set K+ of points of 
JRn having all coordinates positive.) By an analyticity argument, as above, 
one proves easily 

THEOREM A'. Let f be a tempered function on Rn and suppose for some 
minor cone K and ô > 0 

f I ƒ (t)\e3^ dt < oo. 
JRn\K 

Then, iff has a spectral gap, ƒ = 0. 

The condition that K be minor is essential, since for n ^ 2 there exist 
nontrivial ƒ e L1(Rn) which vanish on a half-space and have a spectral gap 
[9, p. 172]. 

If feL1(Rn) does not vanish identically, any </>GL°°(Rn) satisfying the 
convolution equation ƒ * 0 = 0 has a spectral gap. Hence it is easy, by 
duality, to deduce from Theorem A' the following approximation theorem, 
as observed recently for n = 1 by D. J. Newman [6] : 

Let K be a minor cone in Rn, ö > 0, and w(t) a nonnegative measurable 
function on Rn equal to 1 on K, and satisfying 

f w{t)emdt < oo. 
JRn\K 

Then, for any f e L1(Rn) not identically zero, the translates off span Lx(w dt). 
In particular, the translates of f restricted to K, span the integrable 

functions on K. 

2. Logan, in a 1965 dissertation [5, p. 26, Theorem 5.2.1] proved 

THEOREM B. Let f e L^iR) be nonnegative onR+. Then, iff has a spectral 
gap containing 0, ƒ vanishes identically. 

Observe that here (and in the next section) the position of the spectral 
gap (i.e. containing the origin) is essential. We sketch a proof, based on a 
new idea which suggests the correct generalization to Rn. We may assume 
ƒ G L1(R) (for to reduce the general case to this, consider ƒ (t) • (sin s t)2/t2 

with sufficiently small e), and that ƒ (t) = 0 for |x| ^ 3. A simple application 
of Parseval's formula gives for m = 0 , 1 , . . . 

/•CO /»00 

2TI f(t)tme-'dt = m! / (x ) ( l - ix)-"*"1 dx. 
J o J - oo 

The integral on the right is bounded by ($\x^3\x\~m~1dx)-1| ƒ L = 0(3 'w) , 
hence 
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f f{i)e'dt = f"'f{t) £ {2t)mlm\\ e-'dt < C £ (2/3f < oo. 
•'O Jo \m = 0 / m = 0 

Now Theorem A implies ƒ = 0. Q.E.D. 
Let K, K' be closed cones in Rn ; we say K' is strongly enclosed by X if 

{x e X' : |x| = 1} is in the interior of K. We now state our first main result : 

THEOREM B'. Let f be a tempered function on Rn having a spectral gap 
containing 0, and nonnegative a.e. on the closed convex cone K. Let K' be 
any closed cone strongly enclosed by K. Then, for some ô = ô(f; K') > 0, 
jKf(t)eô^dt< oo. 

COROLLARY. In the hypotheses of Theorem B', if the cone complementary 
to K is minor, then f vanishes identically. 

The proof of Theorem B' is in principle like that sketched for Theorem 
B, but complicated technically. The Corollary then follows using Theorem 
A'. 

REMARK. The hypothesis of nonnegativity on K can be weakened to 
having range in a sector of opening less than n. 

3. Logan (loc. cit.) also established a relation between a spectral gap 
about 0 and exponential decay of the Poisson integral [5, Theorems 6.2.3 
and 6.3.1]: 

THEOREM C. Let feL^iR). The spectrum of f is disjoint from ( — a, a) 
if and only if the Poisson integral 

1 f00 y 
u(x;y) = -\ f{®- £—-tdt 

nj.n (x-Ç)\2 + y2 

of f satisfies 

(2) \u(x;y)\£Ae-a', y > 0, 

where A is a positive constant independent ofx. 

This theorem readily implies that of Paley and Wiener. Logan's proof 
uses analytic functions. I gave [8, p. 152] a proof using only Fourier 
analysis, which can be extended to n dimensions. Letting B(x°;a) denote 
the open ball in Rn with center x° and radius a, we have our second main 
result : 

THEOREM C'. Let f be a locally integrable function on W such that 

(3) f (1 + |x |2)- ( w + 1 ) / 2 | / (x) |dx < oo. 

The spectrum of f is disjoint from B(0; a) if and only if the Poisson integral 
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off satisfies, for every s > 0, 

(4) f |M(X, y)\(l + \x\2yin+1)/2 dx ^ 4(e>T(a-6)y, y > 0, 

where A(e) is a positive number independent of x. If (3) J'S replaced by the 
stronger condition f e L00, (4) is to be replaced by 

(4a) |u(x, y)\ ^ y4(£)éT(a"£)y, y > 0. 

The proof requires estimates for "minimal extrapolations" from the 
interior, as well as the exterior, of a ball ; these will be given elsewhere. 
As in the case n = 1, the "only if" part of the theorem can be strengthened 
when /GL 0 0 . 

If, for k e Ll(Rn\ we denote by k{y) the "dilated function" : 

kiy)(x) = y'nk{y'lx)\ xeR\y > 0, 

then Theorem C' (in the case ƒ G L00) may be written : Let 

(5) k(t) = cn(i + \t\2yin+1)/2 

(so that k(x) = e~'*'); the condition 

(6) | ( / * k(y))(x)\ S A(s)k((a - s)y\ y > 0, 

holds for all s > 0, if and only if the spectrum off is disjoint from B(0;a). 
Now, this proposition can be established for a large class of kernels 

k(t) in place of (5), using exactly the same method; in particular, for 
k(t) = e~|f|2, a result obtained otherwise by Ehrenpreis and Malliavin; 
see [3, Corollary 5]. With this special choice of fe, we may permit ƒ in (6) 
to be any tempered distribution. 

4. Assuming (4a) holds for a single value of x, we can nonetheless obtain 
spectral information about ƒ. First, some notation : a locally integrable 
function on Rn is anti-radial if its integral over B(0 ; r) vanishes for every 
r > 0. Every locally integrable function admits an essentially unique 
decomposition into a radial and an anti-radial part (for n = 1, this is just 
the even-odd decomposition). We now state our third main result : 

THEOREM D. Let f be a bounded measurable function on Rn whose Poisson 
integral u(x;y) satisfies \u(0;y)\ ^ Ae~ay. Then, the radial part of f has 
spectrum disjoint from B(0; a). 

Combining Theorems C' and D we deduce a proposition solely about 
harmonic functions : If u is the Poisson integral of a radial function in 
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L°°(!?w), ^ a ^ h0ids for every xeRn if it holds for x = 0. For n = 1 this is a 
consequence of a classical Phragmén-Lindelöf theorem, but for n > 1 it 
appears to be new. Another corollary of Theorem D is : If u is a bounded 
harmonic function on Rn x R+ satisfying u(0;y) = 0{e~ay) as y -> + oo, 
for every a > 0, t/ien w(0, y) vanishes identically (or, what is the same thing, 
u(x; 0 + ) is an anti-radial function on Rn). 

Theorem D also yields a particularly simple proof of the existence of 
"lacunae" for the wave equation (cf. [3, p. 417] for terminology). Also, 
the analog of Theorem D for the kernel k(t) = e~^2 is valid; this is a 
refinement of a theorem in [3]. 

PROOF OF THEOREM D. Assume first ƒ e Ll(Rn). We may assume ƒ radial, 
since the anti-radial part contributes nothing to u(0;y). By assumption, 

f f(x)-y{\x\2 + y2)-(n+1)/2dx\S Ce'ay. 
\JR» I 

Substituting here 

y(W2 + y2)-(w+1)/2 = An L-y^e~^x)dt 

(where An depends only on n), and applying Fubini's Theorem, yields 
(integrations are over Rn) : 

A«\ (f(t)-e-yWdt\^ Ce~ay. 

Writing ƒ (t) = <j>(\t\), we have 
/•oo 

sn~1(l)(s)e-ysds = 0(e~ay), y -• + oo. 
Jo 

Now a simple argument shows that (j)(s) must vanish for s < a, hence 
ƒ (t) = 0 for \t\ < a, as we wished to show. 

The general case, when ƒ need not belong to L1, leads to serious compli­
cations ; to be able to perform the crucial "Fubini" step, we replace the 
Fourier kernel e~i(t,x) by that of Bochner [2, p. 112, (5)], in an n-dimensional 
version, and then suitably extend the spectral analysis of Pollard [7]. 
(This is also applicable to ƒ which satisfy only (3).) 

5. Let G denote any l.c.a. group, G its dual. Let E, Ê be closed subsets of 
G, G respectively. We say the pair (E, Ê) is interpolatory if, for every 
feLx(G), there exists f0 e LX(G) supported in E such that/0(x) =f{x), 
xeÊ. This is equivalent to saying that every function in L^GYE) extends 
to an element of Ll(G) whose Fourier transform vanishes on Ê. For 
instance, one can show when G = Rn, that this is the case ifRn\E and Ê are 
compact. On the other hand, Theorem B' implies that (E, Ê) is not inter-
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polatory if Rn\E contains a nonvoid open cone and Ê has interior. Thus, 
the Fourier transforms of functions supported on proper subcones of Rn 

are constrained in their local behavior, they possess "local structure". 
The detailed nature of this local structure was somewhat clarified in [9] 
for the analogous situation in L00 (Rn). For n = 1 one can show that the 
presence of arbitrarily long intervals in the complement of the spectrum 
already forces local structure. 

5. Acknowledgement. I wish to thank Yngve Domar for valuable 
criticisms of an earlier draft of this paper. A fuller account of the many 
variants and improvements he suggested must wait for our detailed version 
of the present material. 
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