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1. Introduction. The last few years have witnessed a renewed interest in 
the study of the number N(n) of solutions of the equation 

(1) cp{x) = n, 

where cp(x) is Euler's totient function. 
The purpose of the present paper is to give a sharpened (and corrected) 

version of a theorem of Carmichael (Theorem 1 ; see [1, Theorem II]) and 
the proof of a weak form of the 

CONJECTURE. For all natural integers rc, N(n) =/= 1. 

Lower case letters (with or without subscripts, or superscripts) stand, 
in general, for natural integers, p and q, in particular, for odd rational 
primes. 

2. Main results. 
DEFINITION. The natural integer k is said to be admissible, if its (unique) 

representation as a sum of distinct powers of 2, 

k = 2S1 + 2S2 + • • • + 2 \ sx > s2 > • • • > sr ^ 0, 

is such that 22Sj + 1 is a (Fermât) prime for each j = 1, 2 , . . . , r. The set 
of admissible integers is denoted by K. 

REMARK. For r = 0 it is convenient to consider the corresponding 
k = 0 as an admissible integer; one observes that formally one has 
2° + 1 = 2, a prime. 

THEOREM 1. Let %(k) be the characteristic function of the set K (x(k) = 1 
ifkeK, x(k) = 0ifk$K) and set g(m) = X o ^ m X ( k ) ; then, if n = 2m, 

equation (1) has 

(I) N(n) = g(m) + x(m) 

solutions. 

COROLLARY 1. For n = 2m, N{2m) = min (m + 2, 32). 
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It is trivial, but useful, to observe that if (1) has the odd solution x0, 
then it also has the even solution 2x0 and conversely. Hence, if (1) has 
exactly one solution, then 4|x0, as observed already by Carmichael (see 
[I] ; see also Donnelly [2]). 

In the study of (1) for general n, it is convenient to consider residue 
classes modulo M = 2C • 3. Also, the following easily proven Lemma and 
its Corollary are useful. 

LEMMA. The equation pa(p — 1) = qb(q — 1) 'cannot have solutions in 
primes p, q, with p > q, unless a = 0 and p = qb(q — 1). 

COROLLARY 2. The equations (2), (2'), (3), (4), (4'), (5), and (5') have at most 
2 solutions (i.e., ô = 0,1, or 2). 

THEOREM2 .For n — 2, equation (1) has the three solutions x — 3,4, and 
6. For 2 =/= n = 2 (mod 12), (1) has, in general, no solution. Let ô(n) be the 
number of solutions of 

(2) n = p2m~\p - 1), p = - 1 (mod 12); 

then 

(II) N(n) = 2S(n) 

and to a solution p of (2) correspond the solutions p2m and 2p2m of (I). 

THEOREM 2. For n = — 2 (mod 12), let ô(n) be the number of solutions of 

(20 n = p2m(p - 1), p = - 1 (mod 12); 

then 

(II') N(n) - 2ô(n), 

and to a solution p of (2') correspond the two solutions p2m+1 and 2p2m+1 of 
(i). 

THEOREM 3. Let n = 6 (mod 12); if ô(n) stands for the number of solutions 
of 

(3) n = pc~ \p - 1), p - 3 or p = 7 (mod 12), 

then 

(II") N{n) - 2ô(n), 

and to a solution p of (3) correspond the two solutions pc and 2pc of (I). 

REMARK. All possible cases actually occur. The smallest values of 
n = 6 (mod 12), for which (1) has 0, 2, or 4 solutions are n = 90, n = 30, 
and n = 6, respectively. 
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Theorems 2, 2', and 3, together with the trivial remark that, for 1 < n = 
1 (mod 2), N(n) = 0, settle the problem for all residue classes n =£ 
0(mod4). A partial solution of the problem of determining N(ri) for 
n = 0 (mod 4) is obtained by considering the modulus M = 24 = 23 • 3. 

THEOREM 4. Let n = 4 (mod 24) and denote by ôl the number of solutions 
of 

(4) n/2 = p2 m _ 1(p - 1), p = - 1 (mod 12); 

by 32 the number of solutions of 

(4') n = p2m(p - 1), p = 5 (mod 12); 

and by ô3 the number of solutions of 

(4") n = p r 1 p r 1 ( P I - i ) ( P 2 - i ) , 

then 

(III) N(w) - 30! + 2Ô2 + 2(33. 

REMARKS. In Theorem 4, (5t = 0 or 1 ; b2 = 0,1, or 2, while (53 may be 
any nonnegative integer. If ô1 = 1, then x0 = p2m is the unique odd solu­
tion of (p(x0) = n/2 and to it correspond the three solutions 3p2m, 4p2m, 
and 6p2m of (1). To each solution p of (4') correspond the two solutions 
pim+i a n ( j 2p2m+i of (1), and to each solution pl9 p2 of (4"), correspond 
the two solutions pClpC2 and 2pClpC2 of (1). 

If n = —4 (mod 24), then N(n) is still given formally by (III), where 
<5i> à2, (33 are now the numbers of solutions of equations very similar to 
(but not identical with) (4), (4'), (4"), and öx = 0,1, or 2; S2 = 0 or 1 ; and 
(5 3 = 0 ,1 ,2 , . . . ; the exact statement of the corresponding Theorem 4' may 
be omitted. 

THEOREM 5. Let n = 12 (mod 24) and set n = 12 • 3b" *ƒ, (ƒ, 6) = 1. /ƒ 

ƒ > 1, denote by ô\ ( = 0,1, or 2) the number of solutions of 

(5) 2 • 3*/ = p c _ \p - 1), p ES 7 (mod 12); 

by <5'2 ( = 0,1, or 2) the number of solutions of 

(5') 4 • 3*/ - p c" l{p - 1), p s 13 (mod 24); 

and by ô'3 ( = 0,1,...) the number of solutions of 

pt = p2~ 3 (mod 4), 

(5") 4-3»/ = fr'pr'iPi ~ 1)(P2 ~ 1), , j , n n . 

px = p2 = — 1 (mod 12), 

Ci = c2 (mod 2); 
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(III') N(n) = 3Ô\ + 2(5'2 + 5'3). 

Iff= Ijhen 

(III") N(n) = 3 + (50 + 2(5J> + J + R), 

where ô0 = 1 if 2 • 3b + 1 is a prime, ô0 = 0 otherwise; ô'0 — 1 (ƒ 4 • 3b + 1 
is a prime, ô'0 = 0 otherwise; J is the number of integers a,-, 1 ^ a,- < b, SWC/Î 

t/iat 2- 3b~aJ + 1 js a prime; and R is the number of partitions ofb into two 
positive summands, b — b'r + b'r\ b'r =/= b", 1 ^ r ^ K, swc/z t/iaf 2 • 3ft' + 1 
and 2 • 3b + 1 should both be primes. 

REMARKS. TO each solution p of (5) correspond the three solutions 
3pc, 4pc, and 6pc of (1); to each solution p of (5') correspond the two solu­
tions pc and 2pc of (1); and to each solution pu p2 of (5") correspond the 
two solutions pc£ p% and 2p\i pc% of (1). It may be shown that the prime 
solutions of (5') must in fact be of the form p = 1 + 4 • 3b (mod 8 • 3b). In 
case ƒ = 1, (1) always has the three solutions 4 • 3b+ \ 7 • 3b, and 2 • 7 • 3b. 

Theorems 2 to 5 and the remark that 1 < n = 1 (mod 2) => N(n) = 0 
give the exact number of solutions of (1) for n =É 0 (mod 8). If we use the 
modulus M = 48, we are able to settle the case of the residue classes 
0 ^ n = 8 (mod 16); and by using the modulus M = 96, also the classes 
0 ^ n = 16 (mod 32). In all cases, formulae like (II), or (III) show that the 
Conjecture holds for all residue classes considered. Nevertheless, the 
attempt to settle the Conjecture by an induction from the modulus 
M = 2C • 3 to the modulus 2M = 2C+1 • 3 fails. We can, therefore, state 
only 

REMARKS 6. The Conjecture holds, except, possibly, for integers n = 
0 (mod 2C), with c ^ 5. 

This is only slightly stronger than the first statement of the following 
theorem, essentially due to Donnelly [2]. 

THEOREM A. The Conjecture holds, except, possibly for integers n = 
0 (mod 2C), with c ^ 4, and ifx0 is the smallest integer for which N(x0) = 1, 
then n ( = (p(x0)) = 0 (mod 214). 

3. Sketches of proofs. Only the proofs of Theorem 1 (with Corollary) 
and Theorem 2 will be sketched ; the other proofs, while more complicated, 
run along similar lines. 

PROOF OF THEOREM 1. Let x = 2bf, ƒ odd, be a solution of (1) with 
n = 2m. Then, by the multiplicativity of the cp-function, cp{x) = 2Ö _ 1 

cp{f) = 2m, <p(f) = 2k, k = m - b + 1. If pc\f, then pc~l\2k, so that c = 1 
and ƒ is square-free, ƒ = pxp2 ...pr, say, pt =ƒ= pj if i =£ j . Then <p(/) = 
ripl/O7 — 1) = 2k' so that p — 1 = 2e. As is well known, this is possible 
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only for e = 2s; hence, p\f => p = 1 + 22\ cp(f) = Yb=i22'J = 2\ k = 
YJ=I 2SJ- It follows that a solution of (1) of the form x = 2bf is possible 
only if b is such, that k = m — b + l i s admissible, i.e., if k has a diadic 
representation k = YJ= I 2SJ with all 22Sj + 1 primes. To each such b there 
exists a unique solution x = 2bf, except for b = 1, i.e., for k = m, when 
besides x = 2/, there is also the added solution x = ƒ. This essentially 
finishes the proof of Theorem 1. 

PROOF OF COROLLARY 1. The Corollary follows from the remark that 
all integers up to 25 — 1 are admissible, while 25 is not. For m ^ 31, 
N(2m) = 1 + X o ^ m 1 = m + 2; in particular, N(231) = 33. For m = 32, 
one has the 32 solutions x = 2bf with 2 <; b ^ 33 (but not with b = 1 ; 
n = 232 still (see [1]) seems to be the smallest known integer such that (1) 
has no odd solution); more generally, for m > 32 at least the 32 solutions 
x = 2bf with b = m — k + 1, 0 ^ /c ^ 31, always exist, as claimed. 

PROOF OF THEOREM 2. For rc = 2 the result follows from Theorem 1. 
Otherwise, n = cp(x) = 2(6/c + 1) = 2 (mod 4), k > 0, so that x is divisible 
by at most one single odd prime p (otherwise 4\n). If x = pc is a solution 
of (1), also 2pc is one. Finally, if x = 4y, y ^ 1, then 4|n, a contradiction. 
Hence, either x = 4 (and this is excluded by n > 2), or else 2e \x => e = 0, 
or e = 1, i.e., x = pc, or x = 2pc. As seen, each of these two is a solution 
of (1) if, and only if, the other one is and if ô(n) is the number of odd solu­
tions x - pcof(l),thenAT(n) = 2ö(n). If x = /?c,thencp(x) = pc~\p - 1) = 
2(6/c + 1). If p = 3, then 3C _ 1 = 6/c + 1 = 1 (mod 3), c = 1, n = 2, 
excluded. If p = 1, 5, or 7 (mod 12), then (p - l)/2 = 0, 2, or 3 (mod 6), a 
contradiction. It follows that p= —1 (mod 12). Taking congruences 
modulo 12, n = q>(x) = (p - l )p c _ 1 = ( - 2 ) ( - l ) c " 1 = 2 ( - l ) c ( m o d 12) 
and n = 2 (mod 12) imply that c is even, c = 2m and Theorem 2 is proved. 
The proofs of the other theorems are similar and will be suppressed. 
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